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Introduzione

Nel corso degli anni sono state sviluppate molteplici tecniche per misurare i
parametri ricombinativi all’interno di un campione di silicio data I’importanza
che questi rivestono nel migliorare le prestazioni di dispositivi elettronici quali
ad esempio le celle solari, le RAM dinamiche, 1 sensori ottici [1]. Questo
lavoro si inserisce proprio in questo filone, cercando di proporre una soluzione
al problema della misura dei suddetti parametri, in regime di iniezione
arbitrario. All’interno di questa dissertazione sono stati sviluppati strumenti
software, in ambiente MatlLab, in grado di simulare il processo di
ricombinazione attraverso la soluzione numerica dell’equazione della
diffusione con il metodo delle differenze finite sia nel caso monodimensionale
che in quello bidimensionale. Una volta sviluppato tale simulatore, attraverso
delle procedure di fitting, ¢ possibile estrarre 1 parametri di interesse. Per
considerare I’evolvere del processo, si ¢ fatto uso di modelli aggiornati, per la
velocita di ricombinazione e per la mobilita, dipendenti sia dal tempo che
dalle coordinate spaziali. Tali modelli sono gli stessi utilizzati dal simulatore
MEDICI. Per testare la wvalidita del simulatore elaborato sia nel caso
monodimesionale che in quello bidimensionale, si ¢ usato il modello analitico
proposto da Luke e Cheng di decadimento dei portatori minoritari iniettati
attraverso 1’utilizzo di un laser, ed esteso in seguito da Ling ed Ajmera al caso
di velocita di ricombinazione superficiale diversa per le due superfici del
wafer. Tale modello ¢ senza dubbio valido per bassi livelli di iniezione, ma
costituisce solo il punto di partenza della nostra analisi, dato che 1’obbiettivo
finale ¢ quello dell’estrazione dei parametri ricombinativi a livelli di iniezione
qualsiasi, e cio¢ proprio nelle condizioni in cui dispositivi quali ad esempio le
celle solari sono chiamate a lavorare. Per questo motivo per testarne la validita
ad alti livelli di iniezione, il simulatore numerico realizzato € stato confrontato

anche con un simulatore commerciale di grande successo quale MEDICI, che
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tuttavia essendo un simulatore “general purpose” non permette un’estrazione
dei parametri semplice e veloce, per cui si sentiva I’esigenza di uno strumento
piu snello per I’estrapolazione dei parametri suddetti. I risultati raggiunti in
questo lavoro, mostrano un buon accordo tra i diversi modelli sia per quanto
riguarda 1 bassi livelli di iniezione che per gli alti livelli di iniezione.

In un materiale semiconduttore i1 parametri piu importanti per la sua
caratterizzazione sono, per quanto riguarda i1 bassi livelli di iniezione, il
tempo di vita medio di ricombinazione nel bulk (z) e la velocita di
ricombinazione superficiale (in questa tesi sara chiamata S o SRV). Piu in
generale e cio¢ a livelli di iniezione qualunque non potendo considerare piu
75 come una costante, ¢ necessario risolvere 1’equazione della diffusione
numericamente, ed estrarre 1 parametri ricombinativi di interesse, quali il
tempo di vita medio dei portatori minoritari (zyn), dei portatori maggioritari
(7mac) ed 1 parametri Auger. Tali parametri dipendono da una moltitudine di
fattori quali: la tecnica di produzione del semiconduttore, il suo drogaggio, lo
stato della sua superficie e la densita di portatori liberi iniettati. Nel recente
passato sono stati fatti molti sforzi per sviluppare tecniche per la misurazione
di questi parametri, tra tutte queste tecniche ¢ stata data grande importanza a
quelle tecniche che non richiedono nessun contatto con il campione di silicio.
Tali tecniche, sviluppate prevalentemente per bassi livelli di iniezione,
possono essere divise in due classi principali. La prima classe [2,3,4,5,6] si
basa sulla determinazione dell’evoluzione di un eccesso di portatori iniettati
nel campione attraverso tecniche laser. Tali metodi sono interessanti perché
danno un’idea diretta della velocita di ricombinazione del processo. La
seconda classe [7], si basa sulla risposta in frequenza di un semiconduttore
quando ¢ eccitato con un impulso laser modulabile. Le cosi dette tecniche
armoniche richiedono un apparato sperimentale molto semplice, ma il risultato
finale si ottiene solo dopo una complessa analisi numerica. In entrambi 1 casi

il processo di ricombinazione pud essere analizzato o attraverso un impulso
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laser, con energia minore della banda proibita del semiconduttore o mediante
delle radiazioni a microonde, il meccanismo fisico che produce la
modulazione del raggio sonda ¢ lo scattering dei portatori liberi, legato alla
variazione della costante dielettrica del materiale dovuta a sua volta
all’iniezione dei portatori liberi. I principali problemi legati a queste tecniche
sono la conoscenza del livello di iniezione e la separazione tra il contributo
della superficie e quello del volume nel processo di ricombinazione totale. In
tutti 1 lavori fino ad ora eseguiti, tali tecniche non permettono una valutazione
esatta della densita di portatori liberi iniettati nel campione. In genere la
conoscenza del livello di iniezione ¢ affidata alla conoscenza delle
caratteristiche dell’impulso laser. Tuttavia a causa del fatto che i parametri
geometrici che caratterizzano I’impulso laser sono noti con grande incertezza,
tali misure possono essere affette da un errore dell’ordine del 70% per quanto
riguarda il livello di iniezione. Questo non ¢ molto grave quando si lavora a
bassi livelli di iniezione, ma ¢ un grande problema quando si vuole
caratterizzare il valore del tempo di vita medio in regime di iniezione
arbitrario. Un altro problema che si incontra in questo tipo di misure ¢ la
separazione tra il contributo della superficie ed il contributo del volume. La
separazione tra questi due contributi si puod ottenere con la cosi detta tecnica
della doppia pendenza[3,4,5,8]. Questa tecnica ¢ basata sull’identificazione
del cambio di pendenza nella curva di decadimento dei portatori in eccesso.
Infatti per un dato campione di silicio, la curva di decadimento esibisce
un’evidente differenza tra la pendenza iniziale immediatamente dopo
I’impulso laser e la pendenza asintotica verso la fine del processo di
decadimento, quando la SRV diventa abbastanza alta. Sfortunatamente
I’identificazione corretta di entrambe le pendenze risulta molto difficile per
via dell’inevitabile errore di misura e per la non perfetta linearita del sistema
di misura. Inoltre questa tecnica non permette di sfruttare 1 vantaggi delle

informazioni contenute nell’intera curva di decadimento. Oggi il pit comune



metodo per la determinazione del tempo di vita medio dei portatori in un
wafer di silicio cristallino ¢ la tecnica PCD (contactless photoconductance
decay)[7] , dove il decadimento dei portatori iniettati mediante un impulso
laser ¢ misurato mediante le microonde. Tuttavia visto il fatto che la
ricombinazione non avviene solo nel volume del wafer di semiconduttore ma
anche sulla sua superficie, come detto sopra, la costante di tempo che si
ottiene facendo il fitting del decadimento asintotico € monoesponenziale
dell’eccesso di portatori, non ¢ il tempo di vita medio di ricombinazione dei
portatori nel volume 7z ma un tempo di vita medio effettivo 7 . La misura di
T € uguale a 75 solo per wafer di spessore infinito (ovvero per campioni il cui
spessore ¢ molto maggiore della lunghezza di diffusione dei portatori) o per
wafer la cui superficie ¢ stata perfettamente passivata (in modo da annullare la
velocita di ricombinazione superficiale). Considerato il fatto che la lunghezza
dei wafer di silicio normalmente in commercio ¢ 400 xm, la prima condizione
¢ di solito violata ¢ non rimane altro da fare che tentare di minimizzare la
velocita di ricombinazione superficiale (SRV) al fine di misurare la vita
media dei portatori nel volume. Tuttavia la condizione di annullamento
completo della velocita di ricombinazione superficiale non pud mai essere
praticamente raggiunta, e per questo motivo, sperimentalmente si ha sempre
che 7 <7 .Dal punto di vista pratico, il miglior modo di misurare 7z da una
singola misura a microonde PCD ¢ analizzare la parte asintotica della curva di
decadimento e ridurre il piu possibile SRV. Nel passato sono stati compiuti
enormi sforzi al fine di sviluppare tecniche di passivazione della superficie,
per realizzare un’effettiva misura del tempo di vita medio dei portatori
minoritari nel volume di un wafer di silicio. Le sei condizioni generali

richieste per una tecnica di passivazione sono:

l. Una SRV molto bassa e bassi livelli di iniezione
2. Stabilita temporale
3. Omogeneita spaziale



4. Facilita di applicazione
5. Riproducibilita
6. Processi eseguiti a basse temperature in genere sotto 1 400°C in
quanto per alte temperature si puo degradare il tempo di vita medio
nel volume.
Si riportano di seguito i1 piu importanti schemi di passivazione usati
nell’ultimo decennio per la determinazione del tempo di vita medio nel
volume di un wafer di silicio. Lo schema che maggiormente ¢ stato usato per
la passivazione di un wafer di silicio che non tiene conto della resistivita del
wafer stesso, o del tipo di drogaggio e del livello di iniezione ¢ una
passivazione chimica della superficie con acido fluoridrico (HF) [6]. Durante
una misura PCD il wafer ¢ immerso in una soluzione concentrata o diluita di
HF. La grande riduzione di SRV che un trattamento di HF riesce ad ottenere ¢
attribuita alla drastica riduzione della densita di stati superficiale. Nonostante
che con questa tecnica si raggiungono buoni risultati, ci sono due grandi
problemi, il primo ¢ che la qualita della passivazione ¢ fortemente dipendente
dal tempo violando il requisito 2, il secondo ¢ che I’'HF ¢ tossico ed i suoi
vapori possono corrodere gli apparati di misura violando il requisito 4.
Durante gli ultimi anni, per via dei problemi legati all’uso dell’HF, tale
tecnica ¢ stata soppiantata in molti laboratori da un metodo di passivazione
chimica che usa una soluzione alcolica di iodio, che per prima ¢ stata usata da
Horanyi [9]. Nonostante oggi tale tecnica sia una delle piu usate, per la
passivazione della superficie di un wafer, anche essa presenta diversi
problemi, il piu importante dei quali ¢ che la qualita della passivazione
degrada con il tempo, violando il requisito 2, inoltre la riproducibilita degli
esperimenti risulta alquanto scarsa. Una versione modificata della
passivazione con iodio ¢ stata proposta da Arndt [10] che ha usato una sorta di
vernice di alcool e 1odio. Questa tecnica ha il grande vantaggio che il wafer

sotto test non deve essere immerso in un liquido durante la misura. Tuttavia la
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qualita della passivazione non ¢ molto stabile nel tempo. Schofthaler [11] ha
usato un approccio completamente differente per la passivazione della
superficie, usando delle cariche elettriche depositate su entrambe le superfici
del wafer. Tale tecnica ha tuttavia il limite di non essere persistente nel tempo,
e se si considera che per eseguire una misura PCD su un wafer di silicio con
un’area estesa possono essere necessarie anche 10 ore e piu, si capisce che
questo non ¢ un problema da poco. Inoltre la carica non era distribuita
uniformemente per cui tale tecnica violava la regola 3, ed infine per eseguire
le misure era necessaria una elevata temperatura, violando la regola 6. Un
altro metodo per la passivazione della superficie ¢ stato proposto da Katayama
[12], che ha osservato un forte incremento del tempo di vita medio effettivo
dei portatori in un wafer di silicio coperto con uno strato di ossido nativo
durante un’illuminazione ultravioletta (UV). L’effetto di passivazione ¢
dovuto al riempimento degli stati energetici all’interno dell’ossido nativo.
Tale passivazione ¢ altamente instabile e soggetta a rapida degradazione dopo
pochi minuti dall’esposizione. Questo appena proposto non ¢ che un piccolo
sottoinsieme di un insieme molto vasto e variegato di esperimenti e teorie
sviluppate per risolvere lo stesso problema, e cio¢ la determinazione dei
parametri ricombinativi a bassi livelli di iniezione. Per quanto riguarda 1 livelli
di iniezione arbitrari, € necessario operare in maniera diversa, in quanto come
detto in precedenza non ha piu senso parlare di 7z come di una costante da
misurare, ma ¢ necessario estrarre tutti 1 parametri da cui dipende il processo
di ricombinazione, e cio€¢ 7y, Zwac, O €d 1 parametri Auger. La vastita e
trasversalita degli studi effettuati sull’argomento testimonia I’attenzione che la
comunita scientifica da alla soluzione di questo problema che ¢ Ia
determinazione ed il controllo dei parametri che caratterizzano il processo di

ricombinazione in regime di iniezione arbitrario.
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Sommario della tesi

Il capitolo 1 tratta il processo di ricombinazione nella sua generalita,
proponendo i modelli che storicamente sono tra 1 piu usati e consolidati. Il
capitolo 2 considera da un punto di vista teorico 1’interazione di un wafer di
silicio con un impulso laser, mostrando il gia citato modello di Luke e Cheng
sia nel caso monodimensionale che in quello bidimensionale ed inoltre
illustra 1 limiti di validita di detto modello. Nel capitolo 3 viene sviluppata
una possibile metodologia per ricavare la soluzione numerica dell’equazione
della diffusione attraverso il metodo delle differenze finite sia nel caso 1D che
in quello 2D, ottenendo una soluzione veloce e facilmente implementabile. 11
capitolo 4 riporta una serie di simulazioni eseguite sia a bassi livelli di
iniezione, per testare la validita del simulatore realizzato rispetto ad un
modello sicuro ed affidabile come quello analitico, sia ad alti livelli di
iniezione, dove questa volta il simulatore d’elezione ¢ MEDICI. Per
concludere sono riportate tre appendici: la prima in cui si risolve in ambiente
MatLab I’equazione del modello analitico di Luke e Cheng; la seconda in cui
sono riportati 1 listati dei modelli utilizzati per valutare la diffusione, la
mobilita e la velocita di ricombinazione netta; la terza in cui si risolve sempre
in ambiente MatLab, I’equazione della diffusione con il metodo delle

differenze finite.
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Capitolo 1
Il processo di ricombinazione nel volume e in

superficie.

1.1 Introduzione

Le proprieta di un materiale semiconduttore sono determinate e dalla struttura
cristallina (proprieta intrinseche) ¢ dalle imperfezioni e impurita del suo
reticolo cristallino (proprieta estrinseche). Le proprieta intrinseche non
possono essere controllate; quelle estrinseche invece si possono manipolare
attraverso 1’introduzione di impurita e difetti che interagiscono con 1 portatori
di carica liberi (elettroni e lacune) caratterizzando, cosi, le prestazioni dei
dispositivi elettronici. Le impurita e le imperfezioni presenti nel reticolo
cristallino, creano dei livelli nella banda proibita del semiconduttore, questi
livelli possono situarsi a ridosso della banda di conduzione o di valenza
oppure a distanze intermedie, piu vicino al centro della banda proibita; nel
primo caso parliamo di livelli superficiali e nel secondo caso di livelli
profondi. I livelli superficiali, a temperatura ambiente, sono completamente
ionizzati, cio¢ o totalmente liberi o totalmente occupati, per cui non sono
capaci di interagire con i portatori liberi; vengono di solito introdotti
intenzionalmente, drogando il semiconduttore con atomi donatori ed accettori,
allo scopo di controllare la conducibilita ed il tipo di portatori di maggioranza.
I livelli profondi d’altra parte sono solo parzialmente ionizzati per cui essi
danno scarso contributo alla conducibilita totale ma sono capaci di catturare 1
portatori liberi dando vita ad un processo che di volta in volta puo essere di
ricombinazione, di generazione o di intrappolamento. Un’alta concentrazione
di livelli profondi ha come conseguenza un aumento della velocita di
ricombinazione-generazione nel semiconduttore, influenzando

significativamente le sue prestazioni ed il suo utilizzo per una determinata
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Fig 1.1
applicazione. Una bassa velocita incrementa ’efficienza di celle solari e
sensori, riduce il refresh time nelle RAM e diminuisce il rumore e le correnti
di dispersione nei diodi; nei dispositivi di potenza, invece un’elevata velocita

¢ richiesta per migliorarne il comportamento di switching.

1.2 Meccanismi di ricombinazione nel volume

L’interazione tra 1 livelli profondi e i portatori di carica liberi nel volume puo
essere studiata attraverso modelli termodinamici e in particolare attraverso il
modello di Shockley-Read-Hall (SRH). Quando un materiale semiconduttore
assorbe energia, ad esempio per irraggiamento, e se 1’energia fornita ¢ tale da
provocare la generazione di coppie elettroni-lacune, il semiconduttore stesso
si trova in una configurazione energetica instabile e quindi cerchera di
riportarsi ad un livello di energia minima, attraverso un processo inverso alla
generazione, chiamato ricombinazione, che liberera 1’energia in eccesso sotto
diverse forme: per trasferimento ad un fotone (ricombinazione diretta), per
trasferimento, sotto forma di energia cinetica, ad un altro portatore
(ricombinazione Auger) oppure per trasferimento al reticolo sotto forma di
fonone (ricombinazione indiretta). Vedi Fig 1.1.

1.2.1 Ricombinazione diretta

Il processo di ricombinazione diretta avviene prevalentemente in

semiconduttori a banda proibita diretta, quali ’arseniuro di gallio (GaAs). In
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questo processo un elettrone pud ricombinarsi con una lacuna conservando il
suo momento. Questo processo gioca un ruolo minore nei semiconduttori a
banda proibita indiretta, quali il silicio, per cui non sara approfondito in questa
trattazione. Tuttavia, evidenze sperimentali mostrano che tale processo puo
essere descritto con la seguente relazione:

(1.1) U, =Cy(np—n?)

dove U, ¢ la velocita di ricombinazione diretta, N e p sono rispettivamente le
concentrazioni libere di elettroni e lacune ed n, ¢ la concentrazione intrinseca
del semiconduttore. La costante C, pud essere determinata in base a
considerazioni di meccanica quantistica e risulta direttamente proporzionale
alla velocita di ricombinazione ottica all’equilibrio: (~G, =10°cm™s™ per il

silicio a 300 °K)

(1.2) 6= E g

r 7 T
0 ekT _1

dove n ¢ I’indice di rifrazione, h ¢ la costante di Planck, k ¢ la costante di

Boltzmann, T ¢ la temperatura assoluta e K ¢ una costante che descrive

I’interazione tra un fotone che genera una coppia elettrone-lacuna ed un

solido. Senza entrare in ulteriori dettagli, ricordiamo che il tempo di vita

medio per la ricombinazione diretta ¢ inversamente proporzionale al

drogaggio del campione, cosi come indicato dalle seguenti equazioni:

2

T, =——, type-n
G
(1.3) e
T, =——, type-
d G.N, Ype-p

dove N, ed N, sono le concentrazioni di donatori ed accettori.

1.2.2 Ricombinazione Auger
Il processo di ricombinazione Auger coinvolge o due elettroni e una lacuna

oppure due lacune ed un elettrone. In questo processo 1’energia ed il momento
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perso, ad esempio, dall’elettrone che si ricombina con la lacuna viene
trasferito al secondo elettrone.

Se definiamo con U, la velocita totale di ricombinazione Auger abbiamo:
(14) Ua:Cn(nzp_ni2n0)+cp(p2n_ni2po)
dove C, e C, sono 1 coefficienti di Auger rispettivamente per i processi

elettrone-elettrone-lacuna e lacuna-lacune-elettrone(~1-3 107'ecm®s™ nel
silicio). Senza entrare in ulteriori dettagli, riferendoci ai ref. [23-24] per una
completa descrizione di questo processo, ricordiamo che il tempo di vita

medio di Auger ¢ dato da:

1
’Z' =
2 Cn(n§+2nf)+Cp(p§+2nf)

(1.5)

che puo essere semplificato:

1
n-type > 7, = >
C,N
(1.6) ”1 ‘

p-type > 7, =

C,N:

Tale espressione € congruente con il fatto che il processo di ricombinazione
Auger ¢ quello dominante nei semiconduttori con drogaggio elevato. Il
processo di ricombinazione di Auger nel caso del silicio pone un limite
superiore al valore del tempo di vita medio dei portatori. Questo limite ¢
chiamato “limite Auger” per la ricombinazione nel silicio.

1.2.3 Ricombinazione indiretta

In semiconduttori a banda proibita indiretta quali il silicio questo ¢ il piu
importante processo di ricombinazione. Quando gli elettroni presenti in banda
di conduzione nel minimo di energia e le lacune presenti in banda di valenza
nel massimo di energia hanno un momento diverso ¢ poco probabile che essi
si ricombinino con una transizione diretta; tuttavia i livelli profondi in banda
proibita possono catturare 1 portatori liberi ed assorbire la differenza di
momento, permettendo cosi la transizione (ricombinazione). Qualche volta

puo anche succedere che la velocita di cattura delle lacune sia trascurabile
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rispetto a quella degli elettroni; in questo caso poiché non ci sono abbastanza
lacune per la ricombinazione, gli elettroni sono reimmessi in banda di
conduzione (intrappolamento). Stessa cosa pud accadere per le lacune.
Shockley, Read ed Hall, nel 1952, descrissero il processo di cattura ed
emissione dei portatori liberi da parte dei livelli profondi presenti in banda
proibita; questo modello assume che la concentrazione di lacune ed elettroni
in eccesso rimanga uguale durante D’intero processo di ricombinazione
(An(t) = Ap(t))e che la ricombinazione sia delle lacune che degli elettroni
avvenga con la stessa velocita. Nel prossimo paragrafo approfondiremo la
teoria alla base del processo di ricombinazione indiretta data la notevole
importanza che questo processo assume nel silicio semiconduttore che

maggiormente viene usato nella moderna industria elettronica.

1.3 La teoria del processo di ricombinazione indiretta
1.3.1 La cattura ed emissione dei portatori liberi
Considereremo il fenomeno della cattura ed emissione da parte di un livello

profondo discreto e monovalente con energia E, e concentrazione N,. La

probabilita che questo livello all’equilibrio sia occupato ¢ data dalla funzione

di distribuzione di Fermi-Dirac:

1
E,-E,
1+e KT

(1.7)  f.(E)=

dove E, ¢ il livello di Fermi. La (1.4) puo essere riscritta come:

(1.8) f(E)=——=—Pu

n0+nt p0+ pt

dove n, e p, sono le concentrazioni di elettroni e lacune quando il livello di

Fermi e quello profondo coincidono; e sono date da:
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E-E

n =ne
Ei-E

p,=Nn€ «T

(1.9)

dove E; ¢ il livello di Fermi intrinseco.

In condizioni di non equilibrio la funzione di distribuzione di Fermi-Dirac si
modifica; infatti portando in conto la legge della neutralita della carica

elettrica, abbiamo:

(1.10) f,(E)=—To AP=AN_ P, AP—An
n, + N, N, P, + P, N,

Il processo di cattura di un elettrone (lacuna) ¢ basato su due importanti
condizioni: primo devono essere disponibili dei livelli profondi per la cattura,
e secondo deve essere possibile trasferire un elettrone (lacuna) a questi livelli.
L’assenza di una di queste due condizioni rende impossibile il processo, per

cui la velocita di cattura ¢ data dalla seguente espressione, per gli elettroni:
(1.11) r,= N, (E)[ c,(E) f.(E)Y(E)dE

dove c, ¢ la probabilita che un elettrone dalla banda di conduzione con

energia E sia catturato da un livello profondo vuoto in un tempo unitario, g(E)

¢ la densita degli stati in banda di conduzione e f,(E,) ¢ la probabilita che il
livello con energia uguale ad E, sia occupato da una lacuna.

Con I’introduzione del coefficiente di cattura media:

|- (B)f.(E)g(E)dE
(1.12) (c,) ===

J. (E)(E)d(E)

possiamo riscrivere la velocita di cattura come:

(1.13) r,=n{c )N, T, (E)

dove il coefficiente di cattura pud anche essere espresso in termini della
sezione di cattura o, e della velocita termica v, di un elettrone:

(1.14) (c,)=0,v,

Allora possiamo introdurre il tempo di vita medio degli elettroni z,, :
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1
N to-nvn

(1.15) z,, =

e quindi riscrivere la velocita di cattura degli elettroni come:

(1.16) r, = M(E)

TnO

Per le lacune vale lo stesso, € otteniamo:
(1.17) r, = DB
Tho

1
N.o,v,

(1.18) z,,=

La velocita di emissione dipende dal numero di livelli profondi occupati e

dalla probabilita di emissione:

g,= Nt fe(Et)en

1.19
( ) gp = Nt fh(Et)ep

dove e, e e, sono la probabilita di emissione rispettivamente per gli elettroni e

per le lacune. In accordo al principio dell’equilibrio dettagliato, all’equilibrio,
il processo di cattura ed emissione degli elettroni e delle lacune si deve

bilanciare non solo globalmente ma anche localmente, per cui r, =g, e

., =95, ©quindi:

(1.20) gp — pt fh(Et)

Tho

(1.21) g, = n f,(E)

Tno
Quando non stiamo piu in condizioni di equilibrio, i processi di cattura ed
emissione non sono piu bilanciati. La differenza U, =r, -g, ¢ U, =r,—g, puo
essere definita come la velocita di ricombinazione rispettivamente per gli
elettroni e per le lacune. Una differenza negativa ¢ definita generazione.

Il processo di decadimento dell’eccesso di portatori pud essere descritto da:
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OAn

—=-U,+g¢
(1.22) &

aA—p:—U +9

ot P

dove g ¢ la funzione di generazione. Le (1.22) possono essere usate per
determinare le soluzioni a regime, il transitorio e il tempo di vita per gli
elettroni e lacune per una qualsiasi funzione di generazione e per una qualsiasi
concentrazione di livelli profondi.

1.3.2 Il modello SRH

A questo punto possiamo introdurre il modello SRH che per basse
concentrazioni di livelli profondi si verifica quando 1 portatori minoritari sono
catturati da quei livelli che in precedenza erano occupati dai portatori
maggioritari. In questo caso 1’eccesso di elettroni e lacune diminuisce con la
stessa velocita ed il numero di elettroni e lacune in eccesso rimarra invariato
durante I’intero processo (An(t)=Ap(t)). Cosi ¢ sufficiente scrivere una sola
equazione per uno solo dei tipi di portatori liberi:

np-n;’
Zoo(N+1N) +7,0(P + Pr)

(1.23) Ugy =

che in termini di concentrazione in eccesso diventa:

(n, + py) AN + An’
Tho(Py + pt)+7po(n0 +N)+ (7, + TpO)An

(124) USRH =

e il tempo di vita medio puo essere determinato da:

(1.25) 1 =1

SRH
La velocita di ricombinazione ed il tempo di vita medio possono essere
determinate risolvendo numericamente queste equazioni. La soluzione puod
essere analiticamente approssimata per alti e bassi livelli di iniezione

ricavando, rispettivamente:
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An

— Thigh = Tno + Tpo , An? n,+p,
high
(126) Usen = i
An _ Too(Ng + 1) + 7,5 (Py + P) An =
> Tiow = ’ 0= 1, + P,
z-Iow n0+ pO

Il tempo di vita medio per bassi livelli di iniezione e per un semiconduttore
estrinseco puo essere approssimato da:

T,  D-type

(1.27) {
TnO p'type

Il valore di rg,, per regioni intermedie dipende da An ed ¢ dato da:

(1.28) 7, = Tiow (Mg + Py) + Thigh AN
n, + P, +An

Osservando 1’equazione (1.26) si evince che il tempo di vita medio ad alti
livelli non dipende dal drogaggio del semiconduttore ma solo dai parametri
legati ai livelli energetici profondi. Il valore effettivo del tempo di vita per una

qualsivoglia concentrazione in eccesso An varia tra 7, € 7, . Ne viene fuori

che 1l tempo di vita medio aumenta solitamente coll’aumentare di An poiche

Tiow <Thgn - ClOnonostante il processo si inverte per regioni a basso drogaggio.

Teniamo comunque in mente che questa teoria (SRH) cessa di valere quando
la concentrazione dei livelli energetici profondi eccede la concentrazione dei

portatori maggioritari.

1.4 11 processo di ricombinazione superficiale

1.4.1 Introduzione

Il termine superficie € usato ogni volta che si deve identificare una regione tra
due mezzi differenti. La superficie che separa due mezzi solidi, ¢ di solito
chiamata interfaccia, come ad esempio Si-Si0, oppure un’interfaccia metallo-
semiconduttore; la superficie di separazione tra un semiconduttore ed il
vuoto, un gas o un liquido, in genere ¢ identificata come interfaccia libera.
Nel corso di questa trattazione non considereremo questa differenza di

definizione, specificando a che cosa facciamo riferimento quando occorre. Il

-20 -



fatto che la struttura periodica del cristallo sia interrotta in superficie da vita a
delle bande di energia, dette stati superficiali. L’esistenza di questi stati ¢ stata
proposta per primo da Tamm nel 1932, in linea con il suo approccio
meccanico quantistico, che si baso sul modello monodimensionale di Kronig e
Penney. Il suo lavoro fu in seguito esteso al caso di due e tre dimensioni,
inoltre i risultati teorici sono stati avvalorati dai risultati sperimentali, in modo
particolare per I’interfaccia Si-Si0O,, che ¢ stata oggetto di lunghi studi data la
sua importanza nel funzionamento di dispositivi quali il Mosfet. E’ stato
dimostrato che gli stati superficiali sono distribuiti sopra la banda proibita e
sono classificati come stati accettori o donatori. Compatibilmente con il loro
stato di occupazione, questi stati possono essere disponibili per il processo di
ricombinazione, o aumentare o diminuire il potenziale lungo la superficie
insieme alla carica indotta negli strati di ossido. Le cariche nello strato di
ossido consistono delle cariche fisse, delle cariche mobili dovute alle
contaminazioni ioniche e dalle cariche intrappolate all’interno dell’ossido.

Al fine di semplificare il modello i diversi tipi di cariche nell’ossido sono
considerate come un’unica carica superficiale costante. Il processo di
ricombinazione superficiale consiste di due sub-processi: lo stesso processo di
ricombinazione, ed il trasporto di portatori liberi attraverso la regione di carica
spaziale verso la superficie. Il processo si fermera se viene a mancare uno dei
due sub-processi. Irradiando il campione con dei fotoni ad energia
maggiore della banda proibita,  sposteremo lo pseudo livello di Fermi di
elettroni e lacune cosicché cambiera il numero di stati disponibili per la
ricombinazione ed in questo modo cambiera anche il potenziale elettrostatico
in superficie ed il trasporto di portatori liberi verso la superficie. Nel prossimo
sottoparagrafo descriveremo le proprieta dell’interfaccia Si-SiO, cosi come
descriveremo il meccanismo ed il modo per determinare la velocita di

ricombinazione superficiale totale.
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1.4.2 L’interfaccia silicio — biossido di silicio

Il motivo per cui il silicio assume una cosi grande importanza nelle tecnologie
IC puo essere attribuito in massima parte alle notevoli proprieta del sistema
Si-S10,. Le proprieta di semiconduttore ideale del silicio possono facilmente
essere combinate con quelle di dielettrico ed isolante ideale dell’ossido
accresciuto termicamente sul substrato di silicio. Le proprieta dell’interfaccia
Si-S10, sono fortemente condizionate dalla presenza degli stati superficiali,
dalle cariche fisse, dalle cariche mobili e dalle cariche intrappolate presenti
nell’ossido. Questi influenzano il processo di ricombinazione, ed il trasporto
di portatori liberi verso la superficie del silicio. Al fine di descrivere il
processo di ricombinazione totale, ¢ stata data grande enfasi allo studio delle
proprieta del sistema Si-SiOs.

1.4.3 La struttura atomica

La figura 1.2 mostra una rappresentazione bidimensionale della struttura
atomica dell’interfaccia Si-Si0,, nella quale si puo chiaramente osservare la
regione di transizione tra le due superfici. Il rapporto tra la lunghezza del
legame Si-O-Si ed Si-Si & circa uguale a V2. Questo fa si che non ci sia
accoppiamento perfetto tra la struttura cristallina del silicio e 'ossido di
silicio, che da vita ad una zona di transizione. Questo ¢ inoltre permesso dalla

flessibilita dell’angolo del legame Si-O-Si. Tuttavia come si puo vedere dalla
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figura, alcuni legami di silicio rimangono insoddisfatti. La densita di questi
legami insoddisfatti ¢ governata da processi quali la pulizia e la passivazione
della superficie, dallo spessore dell’ossido e dai processi di annealing a cui ¢
sottoposta la struttura. Durante 1 processi di passivazione e di annealing 1
legami insoddisfatti reagiscono con atomi diversi come 1’idrogeno, in modo
da ridurre ’attivita chimica della superficie. E’ stato mostrato che una pulizia
della superficie con HF, limita il processo di ossidazione e la diffusione degli
atomi di ossigeno nel substrato. Nella regione di transizione possiamo

considerare una struttura atomica descritta come SiO4 con x<2. In genere lo

spessore di tale struttura ¢ comunemente considerato di 25 A.

1.4.4 Gli stati all’ interfaccia

Come conseguenza della struttura atomica descritta nella sezione precedente,
gli elettroni nei legami insoddisfatti di silicio, sono sottoposti ad un
potenziale diverso che nella struttura cristallina periodica. 11 legame
insoddisfatto appartiene ad un atomo di silicio il quale ¢ legato ad altri tre
atomi di silicio, il cosi detto “threefold silicon atom”, che crea stati di
interfaccia o stati superficiali veloci nella banda proibita. E’ stato mostrato che
solo 1 legami insoddisfatti creano stati nella banda proibita, mentre la
distorsione angolare dei legami induce semplicemente una coda nella banda di
valenza e di conduzione vicino ai bordi delle stesse. Visto che gli stati di
interfaccia sono direttamente contigui al substrato di silicio, ci pud essere un
trasferimento di portatori tra gli stati di interfaccia e il substrato stesso.
Quando 1 legami insoddisfatti vengono saturati mediante passivazione della
superficie ad esempio con HF, le bande di energia risultanti in superficie sono
traslate nelle bande di conduzione o di valenza, in modo da ridurre la
concentrazione di stati superficiali. La riduzione della concentrazione degli
stati superficiali mediante la passivazione con HF ¢ confermata con la tecnica
dello “Scanning Tunneling Microscopy (STM)” . In superficie stati donatori o

accettori sono statisticamente distribuiti sopra la banda proibita. La
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distribuzione di questi stati energetici dipende dalla procedura di ossidazione
e dal trattamento di pre-ossidazione cosi come dal drogaggio di substrato.
Sono stati sviluppati diversi modelli per descrivere la distribuzione di questi
stati, come ad esempio due gaussiane oppure una distribuzione ad U o
parabolica. I due modelli proposti sono in buon accordo all’interno della
banda, ma sono estremamente diversi quando ci si avvicina ai bordi della
banda, come si pud vedere dalla figura 1.3. La forte differenza in
corrispondenza dei bordi non ¢ molto importante in quanto tali stati danno un
contributo trascurabile al processo di ricombinazione. E’ stata sviluppata una

grande varieta di metodi per misurare 1 parametri che caratterizzano gli stati di

interfaccia come le misure di conduttanza di un capacitore MOS e molti altri

ancora.
1.4.5 Le cariche fisse nell’ossido

I legami insoddisfatti che appartengono all’atomo di silicio legato a sua volta
con tre atomi di ossigeno nello strato di ossido di silicio creano una carica
positiva chiamata appunto carica fissa nell’ossido (figura 1.2). Tale carica ¢

caratterizzata dall’incapacita di scambiare la sua carica con il substrato di
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silicio e dal fatto di essere stabile ed immobile anche se sottoposta a grandi
campi elettrici o a forti temperature. La carica fissa ¢ sempre positiva,
indipendentemente dal tipo di drogaggio di substrato e dalla sua

. . .. . 10 . - \
concentrazione, ¢ la sua densitd varia in un range di 10'°+10" cm?, ed ¢

localizzata a circa 25 A dall’interfaccia, in una regione di transizione SiOy
non stechiometrica .Anche ’eccesso di ioni silicio presenti nell’SiO, da vita
ad una carica fissa nell’ossido. Durante 1’ossidazione termica del silicio, gli
atomi di ossigeno diffondono attraverso gli strati di SiO, per raggiungere
I’interfaccia e dare vita ad un nuovo strato di Si0,. Allo stesso tempo un
eccesso di atomi di silicio ¢ presente vicino all’interfaccia al fine di reagire
con 1’ossigeno. Quando il processo di ossidazione termina gli atomi di silicio
in eccesso rimangono bloccati in prossimita dell’interfaccia e danno vita ad
una carica positiva. La concentrazione della carica fissa presente nell’ossido ¢
fortemente legata al processo di ossidazione, alla temperatura, alle condizioni
di raffreddamento ed all’orientazione dello strato superficiale del silicio.
Questa carica positiva, attrae gli elettroni e respinge le lacune dalla superficie,
cosi da provocare in corrispondenza della superficie un’accumulazione per un
campione di silicio di tipo n ed uno svuotamento o inversione alla superficie
di un campione di silicio di tipo p. Cosi come gli stati di interfaccia la carica
fissa puo essere eliminata con processi di annealing al fine di saturare 1 legami
insoddisfatti con altri atomi.

1.4.6 Le cariche mobili

Tale carica & prevalentemente dovuta alla presenza di ioni alcalini di tipo Na"
e K", che sono intrappolati nell’ossido durante i processi che coinvolgono il
campione. Una caratteristica di questi ioni ¢ la loro elevata mobilita per cui
possono migrare all’interno dell’ossido anche sotto 1’azione di deboli campi
elettrici, anche a temperatura ambiente. Una diminuzione della temperatura

causa una diminuzione della mobilita degli ioni nell’Si0,. La mobilita degli
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ioni Na" e K nell’SiO, pud essere approssimata attraverso la seguente
espressione in un intervallo di temperatura compreso tra 300 e 450 °C:

(1.29) w(m)=+220e

dove u(T) ¢ la mobilita , in funzione della temperatura assoluta, espressa in

cm’/Vs. Gli ioni mobili possono anche essere intrappolati da siti trappola

locati in corrispondenza della superficie in particolare a circa 50 A. Lo ione
K" mostra una maggiore propensione ad essere intrappolato rispetto allo ione
Na'. Questi ioni possono dare vita ad una carica superficiale equivalente ed
avere effetti sul potenziale superficiale. Le cariche mobili possono essere
minimizzate attraverso la pulizia dei forni con miscele O, e HCL, attraverso la
crescita degli ossidi in ambienti O, — HCL o mediante protezione del

semiconduttore con strati dielettrici impermeabili agli ioni alcalini.
1.4.7 Cariche intrappolate nell’ossido

Queste cariche sono dovute a difetti nell’ossido come impurita o legami
incompleti; e possono essere ridotte con processi di annealing simili a quelli
utilizzati per ridurre gli stati all’interfaccia. Sebbene neutre, possono diventare
cariche a causa di portatori energetici che superano la barriera di potenziale,

oppure portatori generati da radiazione ionizzante.
1.4.8 1l diagramma delle bande di energia in prossimita dell’interfaccia

Nelle precedenti sezioni abbiamo discusso dei parametri piu importanti
dell’interfaccia Si- SiO,. La carica totale per questo tipo di interfaccia puo
essere classificata in quattro categorie diverse: le cariche all’interfaccia, le
cariche fisse nell’ossido, gli ioni mobili e le cariche intrappolate nell’ossido;
ma solo le prime sono in contatto con il substrato e possono scambiare

portatori di carica con esso.
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La figura 1.3 mostra il diagramma delle bande di energia per un interfaccia Si-
Si0, per un campione di silicio di tipo p sottoposto ad illuminazione ottica .
Da tale figura ¢ facilmente osservabile la distribuzione gaussiana degli stati
accettort ¢ donatori H;,, ¢ H,, le cariche fisse nell’ossido le cariche
intrappolate nell’ossido e le contaminazioni di ioni. La curvatura della banda,
Yo € causata in parte dalla ionizzazione degli stati di interfaccia dipendenti
dalla concentrazione di elettroni e lacune, ed in parte dalla carica totale indotta
nell’ossido. Livelli di illuminazione molto alti, appiattiscono le bande,
qualsiasi sia la carica superficiale, a causa della presenza di un elevatissimo
eccesso di portatori. In maniera approssimata possiamo dire che gli stati
donatori e accettori ionizzati sono localizzati sopra e sotto lo pseudo livello di
Fermi, Eg, ed Eg, rispettivamente per gli elettroni e per le lacune, il resto dei
livelli sono non ionizzati e disponibili per la ricombinazione. La
ricombinazione dei portatori in superficie ¢ accompagnata da un eccesso di
elettroni nel volume che vengono trasportati attraverso la regione di carica

spaziale da correnti di diffusione e di trasporto quando non ¢ presente un
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contatto in superficie. In seguito all’illuminazione, il livello di Fermi di
elettroni e lacune sara separato ed lo pseudo livello di Fermi aumentera. Il
gradiente dello pseudo livello di Fermi per gli elettroni e le lacune nella
regione di carica spaziale ¢ proporzionale alla densita di corrente di elettroni e
lacune. E’ molto importante conoscere la variazione dello pseudo livello di
Fermi nella regione di carica spaziale e specialmente la sua posizione in
superficie, che determina il numero di stati di interfaccia ionizzati e quelli

disponibili per la ricombinazione.
1.4.9 La velocita di ricombinazione superficiale

Abbiamo visto come D’interruzione, in superficie, della struttura cristallina
ideale, introduca ulteriori stati energetici in banda proibita, questi stati
influenzano il processo di ricombinazione in un modo molto simile al modello
di Shockley-Read-Hall per la ricombinazione nel substrato. In ogni modo
poich¢ i portatori che si ricombinano in prossimita della superficie del
campione di silicio possono essere considerati alla stregua di una corrente che
fluisce all’esterno del campione stesso, € molto semplice modellare la
presenza dei centri di ricombinazione vicino alla superficie con una
condizione al contorno costante che lega il valore della concentrazione dei
portatori ed il loro gradiente in corrispondenza della superficie. Questo
parametro costante che ¢ generalmente indicato con il nome di Surface

Recombination Velocity o SRV ¢ dato da:

(1.30) SRV — D(l@j

n ox

boundary

nel caso in cui X ¢ la coordinata spaziale e stiamo considerando un problema

monodimensionale.
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Capitolo 2
Soluzione analitica dell’equazione della

diffusione in regime di bassa iniezione

2.1 Introduzione

S1
- Sz
\\ B
Impulso > D
LASER hv
TB
|
— \\ B
Fig 2. 1

Nel primo capitolo di questa tesi abbiamo spiegato 1 fondamenti teorici sia del
processo di ricombinazione nel substrato sia di quello in superficie. In questo
capitolo analizzeremo 1’andamento dell’eccesso di portatori minoritari
prodotto in un wafer di silicio da un impulso laser di energia maggiore della
banda proibita che caratterizza il semiconduttore. L’obbiettivo finale di
quest’analisi € quello di determinare il tempo di vita medio nel substrato, z;, e
la velocita di ricombinazione superficiale SRV. Per fare questo considereremo
il modello analitico di Luke e Cheng [8] esteso da Kousik, Ling ed Ajmera
[4,5] al caso di velocita di ricombinazione superficiale diversa per le due facce

del semiconduttore.
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2.2 Analisi del modello di Luke e Cheng

L’obbiettivo di quest’ analisi ¢ quello di risolvere 1’equazione della diffusione
nel caso di interazione di un impulso laser di forma arbitraria con un wafer di
silicio di spessore d, uniformemente drogato e libero da campi elettrici.
L’intensita del fascio laser ¢ tenuta abbastanza bassa in modo da mantenere il
campione di silicio in condizioni di bassi livelli di iniezione in ogni punto e
durante I’intero processo di iniezione dei portatori liberi. In questo caso il
tempo di vita medio dei portatori nel substrato, z,, ¢ la velocita di
ricombinazione superficiale, SRV, possono essere considerati costanti durante
I’intero processo di ricombinazione.

L’equazione della diffusione e:

(2.1) aa—::DVzn—l+g

Tg
che puo essere risolta insieme con le condizioni al contorno

(2.2) DVn-|)1|aS =Sn|

oS

dove n ¢ la concentrazione dei portatori minoritari in eccesso funzione delle
coordinate spaziali e del tempo, D ¢ il coefficiente di diffusione dei portatori
minoritari € S la velocita di ricombinazione superficiale (che pud essere
diversa per le diverse facce del dispositivo). Inoltre ¢ nota la funzione di

generazione, g(x,y,zt) dei portatori minoritari in coordinate spaziali.

2.2.1 Caso monodimensionale

Nel caso monodimensionale, le (2.1),(2.2) diventano:

(2.3) D N nex.b

ot ox* Tg +9()ot)
5 N, =50n(ﬂ,tj
oX |,.—d 2
(2.4) ? ]
on(xb| - _ Sln(—,t]
x=d 2
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dove D ¢ il coefficiente di diffusione dei minoritari, S, ¢ la velocita di
ricombinazione sulla faccia anteriore del campione, dove impatta 1’impulso
laser, e S, ¢ la velocita di ricombinazione sulla faccia posteriore.

Per un wafer irradiato con luce monocromatica di lunghezza d’onda A, e
assumendo che ogni fotone assorbito crei una coppia elettrone-lacuna, la
funzione di generazione dei portatori minoritari, g(x), nell’equazione (2.3),
che tenga conto degli effetti di riflessione multipla da parte di entrambe le
superfici del campione ¢ data dalla seguente espressione:

ew(x%j +Re™ ew{%gj

1 _ RZe—Zad

(2.5) g(x)=N,(1-R)a

dove R ¢ il coefficiente di riflessione delle superfici, « ¢ il coefficiente di

assorbimento ottico alla lunghezza d’onda dell’impulso laser' ed N, ¢ il

numero di fotoni incidenti sulla superficie del campione per unita di area.
Osserviamo che per R=0 si ha assenza di riflessione mentre per R=1 si ha
riflessione totale.

Metodo di separazione delle variabili

Assumiamo:

n(x,t) = A(X)B(t)

allora, sostituendo questa nell’equazione (2.4) e raccogliendo le variabili e
separando otteniamo le seguenti due equazioni:

z—?+(a2D+L}B=O

Tp

(2.6)
d’A

e +a’A=0
X

Queste equazioni possono essere facilmente risolte in modo da ottenere la

soluzione generale della (2.4):

-1
! Considereremo i casi di alto coefficiente di assorbimento, & = 292cm , corrispondente ad una lunghezza d’onda di
-1
A= O.904,um che & emesso da un laser di GaAs; ed il caso di basso coefficiente di assorbimento, & =10CM™ che
corrisponde ad una lunghezza d’onda di A= 106,um di un laser Nd:Yag.
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(2.7) n(xt)= e_EZ:(Ak cosa X + B, sina,x)e

k

dove A,B, ed a, sono costanti, ¢ la sommatoria ¢ necessaria per soddisfare la
condizione iniziale.
Ora applicando le condizioni al contorno (2.5) otteniamo 1’equazione

caratteristica necessaria per determinare a, :

(2.8) ad =tan_1(DS° j+tan"1[ 5 j+k72’

a, Da,

con k intero. Se S, =S, I’equazione (2.9) diventa:

(2.9) akd=2tan"l[ S j+k7z
Da,

ad . . . e
Ponendo z, :kT’ possiamo scrivere A, in termini di B, come:

(2.10) 'Ak:_Dakcoszk+80sinzkB __bB
Da, sinz, — S, cos z, “ Kk

La soluzione generale diventa:

t

(2.11) n(x,t)= eiaz B, (b, cosa,x +sin akx)e’aEDt
k

In questo modo il coefficiente B, ¢ ’unico che deve essere determinato per

ricavare completamente la soluzione n(x,t).
E possibile dimostrare che i termini nella sommatoria che dipendono da x
formano in insieme di funzioni ortogonali per il quale vale la seguente

relazione :

d
(2.12) J‘_Zg(bk cosa, X +sina, X) x(bk. cosa,. X +sin ak,x)dx =0
2

per k =k .
Applicando la condizione iniziale otteniamo:

(2.13) n(x,0)=> B, (b, cosax+sinax)=g(x)
k

e quindi tenendo conto dell’equazione (2.6) possiamo determinare B,
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s e S s
. Oy [bg(a(d +sinq<d) +(q(d —Sina(d)]( o7 +51<2)

dove

_N,(1-R)

(2.15) g, =Rl R

Abbiamo cosi completamente determinato la concentrazione n(x,t).

La densita media dei portatori in eccesso n_, (t) nel campione ¢ data da:

avg

L(s
(2.16) n,, (1) =EJ._2dn(x,t)dx

che risolto da:

(2.17) n,,(t)=> Bkbke{*[iwa}t} sin z,
k

Zy

Osserviamo che per t=0 :

L}
2

1 _N,(1-R)(1-e™")
(2.18) n,(0)= 5 J-_zdn(x,O)dx = d0_Re ™)

Trovata la densita media dei portatori in eccesso per una funzione impulsiva
possiamo usare la tecnica della convoluzione per ottenere lo stesso risultato

per una forma arbitraria dell’impulso laser G(t) :

(2.19) n,()=[n,,(:)G(t-7)dz

2.2.2 Caso bidimensionale

Nel caso bidimensionale, le (2.1),(2.2) diventano:

(2.20) an(z,ty,t) _ D[Gzn(X, y.t)  &n(x, y,t)j_ n(x,y,t) SIS

ox’ oy’ Ty
NGUCS A9 s,n (j, y,t)
OX 4 2
(221) : ;
_ponx.y.H zsln(_,y,tj
OX ] 2
2
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dove D ¢ il coefficiente di diffusione dei minoritari, S, ¢ la velocita di
ricombinazione sulla faccia anteriore del campione lungo x, dove impatta
I’impulso laser, e S, ¢ la velocita di ricombinazione sulla faccia posteriore
lungo x. Inoltre assumeremo che le dimensioni laterali lungo y siano molto
piu grandi di quelle lungo x. Per un wafer irradiato con luce monocromatica di
lunghezza d’onda A, e assumendo che ogni fotone assorbito crei una coppia
elettrone-lacuna, la funzione di generazione dei portatori minoritari, g(x,y),
nell’equazione (2.20), che tenga conto degli effetti di riflessione multipla da
parte di entrambe le superfici del campione ¢ data dalla seguente espressione:

eﬂ(x%j +Re™ efa(%%)

(222) 9(x,y)=| Ny(1-R) 1— R2e 2«

5(y)

dove R ¢ il coefficiente di riflessione delle superfici, « ¢ il coefficiente di
assorbimento ottico alla lunghezza d’onda dell’impulso laser ed N, ¢ il
numero di fotoni incidenti sulla superficie del campione per unita di area.
Metodo di separazione delle variabili

La linearita del problema permette di separare le variabili, per cui possiamo
scrivere:

(2.23) n(x,y,t) =n.(x,t)n,(y,t)

La soluzione per n, puo essere determinata facilmente in quanto le dimensioni

laterali possono essere assunte infinite, per cui:

1 =X
(2.24) n, :z—e“Dt

7Dt
Questa relazione corrisponde ad una funzione gaussiana a media nulla e
varianza pari a 2Dt. La soluzione per n,_ procede come nel caso
monodimensionale ed ¢ data dalla (2.11). La densita media dei portatori in

eccesso n,.(t) nel campione ¢ data da:

avg

1565
(2.295) navg(t):%.[_;j}zhn(x, y, Dydxdy
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dove h ¢ la dimensione del campione lungo y e d quella lungo x.
Trovata la densita media dei portatori in eccesso per una funzione impulsiva
possiamo usare la tecnica della convoluzione per ottenere lo stesso risultato

per una forma arbitraria dell’impulso laser.

2.3 Validita del modello analitico

Il modello di Luke e Cheng ¢ valido in un semiconduttore in cui i parametri
ricombinativi, cio¢ z; € SRV sono costanti durante 1’intero processo di
ricombinazione. Questo vincolo per 7z, ¢ certamente soddisfatto quando ci
troviamo in condizioni di bassi livelli d’iniezione, cio¢ quando la densita dei
portatori iniettati ¢ molto minore della densita dei portatori all’equilibrio nel

materiale semiconduttore, cio¢ quando An= n,. Per quanto riguarda la

velocita di ricombinazione superficiale, SRV, all’interfaccia Si-SiO, , mentre
essa per un semiconduttore di tipo-N non varia, cio¢ ¢ costante, a bassi livelli
d’iniezione; per un semiconduttore di tipo-P , essa varia significativamente
anche a bassi livelli d’iniezione rendendo non valido il modello analitico
descritto sopra. Inoltre il modello risulta non valido anche nel caso di
semiconduttori ricoperti solo dall’ossido nativo, pochi angstroms, e nel caso di
materiale ossidante diverso dal biossido di silicio. In questi casi riterremo
comunque costante la SRV durante 1’intero processo ricombinativo salvo poi
testare la wvalidita di quest’ assunzione attraverso 1’analisi dei risultati
sperimentali. In appendice A sono riportati i listati delle funzioni MatLab che
implementano [’algoritmo analitico di risoluzione dell’equazione della
diffusione riportato in questo capitolo e poter cosi effettuare i confronti con
I’algoritmo numerico di cui parleremo nel prossimo capitolo, al fine di testare

la validita di quest’ultimo a bassi livelli di iniezione.
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Appendice al Capitolo 2

A.2.1 Modello analitico della mobilita

Come alternativa a1 valori tabellati in funzione della concentrazione a T=300K
per il silicio, si pud utilizzare un modello analitico elaborato da D.B.M.
Klaassen [29] denominato “Philips Unified Mobility”, che ¢ un modello in
grado di descrivere la mobilita dei portatori maggioritari e minoritari, ed
inoltre prende in considerazione i seguenti effetti:

e Scattering sia degli accettori che dei donatori

e Scattering tra portatore e portatore

e Screening

Tale modello ¢ particolarmente adatto ai dispositivi bipolari. La mobilita degli

elettroni ¢ descritta dalle seguenti relazioni:

2.26) L__1 , 1
;un lulatt,n /uD+A+P

dove
T —TETN.UM
Hiaes = MMXN .UM (ﬁj
(227) ALPN
UM
~ Neo [ NRFN.UM N n+p
/uD+A+P /uN,n N N /uc,n N

sc,eff ,n sc,n sc,eff ,n

Uy > Hons Neens N o SONO date dalle seguenti espressioni

o = IMXN UM — MMNN.UM | 300

_ MMXN.UM - MMNN .UM ( T )0‘5
(2.28) 7" = MMXN.UM — MMNN.UM ( 300

Nsc,n = NI;+NZ+ p

MMXN .UM ? ( T JS(ALPN.UM)LS

N

* * p
=N, +N,G(P,)+
sc,eff ,n D A ( n) F ( Pn)

I livelli effettivi di impurita N, ed N, contemplano anche gli effetti di

altissimi livelli di iniezione e sono definiti come:
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NS =N |1+

2
CRFD.UM +[NRFDUM]
D

(2.29) - -

N:=N,|1+ !

NREAUM T

A

CRFAUM + (

Le funzioni F(P,) e G(P,), portano in conto la massa finita delle lacune

coinvolte nello scattering ed il potenziale repulsivo degli accettori, sono

CSpresse come:

0.7643P>*7 +2.2999 + 6.5502 Me
F(R)= i
P 7 12.3670 - 0.8552 —¢
(2.30) M
0.89233 0.005978
G(R)=1- 1.80618

T 0.28227 1019778 + 300 0.72169
041372+p | M * p M >
m, 300 m, T

Il parametro P, che considera gli effetti di screening vale:

-1

2.459 3.828 T Y

2.31)P = + ( )

( P, 3.97x10°NZ7  1.36x10° (m, ) | (300
n+p (m,

E possibile ottenere espressioni simili per le lacune. La massa effettiva per

elettroni e lacune vale m =1.0m, ed m, =1.258m, dove m, ¢ la massa di un

elettrone libero.
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Capitolo 3
Soluzione numerica dell’equazione della
diffusione col metodo delle differenze finite in

regime di iniezione arbitrario

3.1 Introduzione

Il calcolo numerico oggi viene usato in campi dove era virtualmente assente
prima del 1950. L’alta velocita computazionale dei calcolatori, ha reso
possibile la soluzione di problemi scientifici ed ingegneristici di grande
complessitd. Questa capacita ha in effetti stimolato molto la ricerca
nell’analisi numerica rendendo possibile lo sviluppo di tecniche di analisi
altrimenti irrealizzabili. Uno dei piu importanti risultati dei metodi discreti ¢
quello di ridurre un sistema continuo in un sistema discreto equivalente che ¢
facilmente risolvibile attraverso I’utilizzo del computer. All’inizio si puo
certamente essere ingannati dal fatto che questa tecnica pud apparire
elementare, ma il suo uso indiscriminato pud condurre facilmente in errore.
L’approssimazione base ¢ quella di considerare un dominio continuo D come
costituito da una rete o una maschera di punti discreti all’interno di D stesso
come mostrato in figura 3.1 nel caso di un dominio bidimensionale. Viene poi
calcolata una soluzione per ogni punto della griglia. I valori intermedi oppure
1 valori di integrali, derivate ed altri operatori possono essere ottenuti da
questa soluzione attraverso le tecniche di interpolazione. La discretizzazione
delle equazioni e delle condizioni al contorno che governano un problema
continuo, potrebbe essere compiuta fisicamente, ma molto piu spesso €
ottenuta matematicamente. Nell’approccio fisico il modello discreto ¢ ottenuto

mettendo insieme le caratteristiche fisiche del sistema continuo. Ad esempio
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una lastra per la conduzione del calore potrebbe essere considerata come una
rete di barrette conduttive. Le equazioni che governano il sistema continuo
sono quindi sviluppate attraverso la diretta applicazione delle leggi fisiche al
sistema discreto. Nell’approccio matematico, la formulazione continua ¢
trasformata in una rappresentazione discreta attraverso 1’uso delle derivate.
Quando la formulazione del problema continuo ¢ gia disponibile questa
procedura ¢ molto semplice ed anche molto flessibile. Noi limiteremo la
nostra attenzione all’approccio matematico.

Lo sviluppo delle approssimazioni discrete pud essere ottenuto in diversi

modi, noi ci occuperemo del metodo delle differenze finite.
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3.2 Metodo delle differenze finite

In questo paragrafo noi esamineremo le idee fondamentali che stanno dietro la
soluzione numerica diretta delle equazioni differenziali con il metodo delle
differenze finite. Ci sono molti modi di ottenere la rappresentazione alle
differenze finite delle derivate. Quello piu semplice viene attraverso la stima

delle derivate usando I’espansione in serie di Taylor:

df

3.1) f (X, +AX) = f(X,)+AXx— + .
dx

Xo

2 3
+(Ax) d*f | +(Ax) d*f|
2 dx?| 6 dx’

Xo Xo

e risolvendo in funzione di g_f
X

Xo

2
(3.2) df | F,+A0) - f(x) Axd I' o
dx,, AX 2 dx |X0
oppure:
(3.3) af | f(x+4%)- f(X°)+O(Ax)
dx|,, AX

dove I'ultimo termine ¢ chiamato “errore di troncamento”. In questo caso
I’errore di troncamento ¢ O(Ax). Quando I’ordine dell’errore di troncamento ¢
O(Ax), l’approssimazione ¢ ‘“accurata al primo ordine”, e I’errore ¢
direttamente proporzionale a Ax. Quest’ approssimazione della derivata prima
¢ nota come differenza in avanti, in quanto fa uso solo dell’informazione
seguente x,. Un’altra approssimazione della derivata, fa uso solo

dell’informazione precedente al punto di interesse, ed ¢ nota come differenza

all’indietro:

df AX)’ d2f Ax)’ d3f
(3.4) f(xO—Ax):f(xo)—Ax& +( 2) dx2| ! 6) dx3|

Xo Xo Xo

oppure, risolvendo in funzione della derivata prima:

(3.5)

ﬂ _ f(xo)_ f(XO_AX)+O(AX)
X

dx A

Xo

ed ¢ ancora accurata al primo ordine.
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In molti casi viene richiesta una rappresentazione alle differenze finite piu
accurata; ci0 pud essere ottenuto o diminuendo il passo Ax, oppure
utilizzando una approssimazione della derivata con errore di troncamento

O(Ax*) in quest’ultimo modo I’accuratezza richiesta puod essere ottenuta con
meno punti griglia. Un’ approssimazione al secondo ordine, O(Ax*), puo
essere ottenuta sottraendo le serie di Taylor precedenti:

df

343
(B.6)  F0+0 F(x A0 =288 () d°f

dx’

Xo o

Qui 1 termini di ordine O(Ax) si cancellano nella sottrazione. Quando poi
dividiamo per 2Axe risolviamo mettendo in evidenza la derivata prima,
otteniamo un’ espressione con errore di troncamento O(Ax’). L’espressione

che ne viene fuori per la derivata prima ¢:

df | (X +A%) = f (%, —AX)
dx 2AX

Xo

(3.7) +O(AX)?

Questa ¢ la formula alle differenze al centro accurata al secondo ordine, in
quanto I’informazione ci viene da entrambi 1 lati del punto d’interesse. In
modo simile possiamo ottenere 1’approssimazione alle differenze finite per la
derivata seconda. Sommando le espressioni delle serie di Taylor per le
espansioni in avanti e all’indietro, otteniamo la seguente espressione, dove 1

termini dispari si cancellano:

(3.8) f (X, +AX) + f (%) — AX) = 42 (X,) +(Ax)’ dXI +0(Ax)°
g . . . d*f
e quindi risolvendo in funzione di ol
X
2 _ —
(3.9) d*f| _ F A0 =21 (%) + F (X, AX)+O(Ax)2

AX?

Le formule date sopra son quelle piu frequentemente utilizzate
nell’approssimare le derivate usando il metodo delle differenze finite.

Ulteriori espressioni possono essere derivate per il caso di punti distribuiti non
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uniformemente. In generale 1’errore di troncamento per il caso di punti
spaziati in maniera non uniforme ¢ peggiore del caso di punti spaziati
uniformemente. In pratica, se la griglia ¢ spaziata in maniera ragionevole ci0
non rappresenta un grave problema. Quello di cui abbiamo bisogno ¢ di
ottenere una formula alle differenze al centro per la derivata prima, e
un’espressione per la derivata seconda. Per prima cosa consideriamo le
espansioni in serie di Taylor in avanti e all’indietro. Comunque, la distanza tra
1 punti sara differente nelle due direzioni. Usando Ax'e Ax™ per distinguere

tra le due direzioni, possiamo riscrivere le (3.1),(3.4):

2 3
AX") g2 AXT) 43
10 o= toxeax 8 S ()

2 dx? 6 dx’

Xo Xo Xo

2 3
_ _df AX") d*f AX") d*f
(3.11) f(X,—AXx") = f(x,)—AX ™ +( 2) vl —( 6) vl B

0 Xo

Xo
Posto Ax" =aAx . Possiamo ottenere le espressioni desiderate , sostituendo

Ax" con aAx nella prima e moltiplicando per «la seconda. Le espressioni

risultanti sono:

o _df|  (aAXT) d?] (O(AX_)3d3f|
(3.12) f (X, +AX") = f(X,)+aAX &onr e X0+ R X0+...
2 3
_ _df AXT) d*f AX") d°f
(3.13)  af(x,—Ax)=af(x,) - aAx d_Xx0+a( 2) e |X0—a( 6) e |XO+.,.

Per ottenere ’espressione per la derivata prima, sottraiamo le equazioni

precedenti:

(3.14) f(x, +AX)—af (x,—A) = f(x)—af (><0)+20Ax%

e risolvendo per ar
dx

Xo

315 4

dx

X+ A+ (a1 (%) —af(X,—AX)
- 20X

+O(AX")

Xo

-4 -



|

o Ax= Ay=cost.
< — x=i Ax
i1,j | Lj itl,j
y=i Ay

ij-1

Fig 3.2

Per ottenere 1’espressione per la derivata seconda, sommiamo:

_ \2
(3.16) f(X, +AX)+af(x,—Ax)=f(x)+af(x)+ (aA2x) +05(A);) z;%

Xo

he risol d*f|
che riso tapery :
X

(3.17) d*f| _ FO+AX) =+ a) f (%) +arf (%~ AX)

+O(AX)

(04 \2
%o —(1+a)|AX

S (+a)(ax)
Notiamo che entrambe le equazioni per a =1 si riducono alle espressioni date
per una griglia spaziata uniformemente (Ax™ = Ax").

Queste formule possono anche essere usate per rappresentare le derivate
parziali. Per semplificare la notazione, introdurremo una griglia e una
notazione ampiamente usata nella descrizione del metodo delle differenze

finite. La figura 3.2 illustra questa notazione per (Ax=Ay=cost). In questa

notazione le approssimazioni alle differenze finite per le derivate diventano:
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Discretizzazione

Sistema di equazioni
PDE ) i
Consistenza algebriche

Stabilita

Soluzione esatta Convergenza Soluzione approssimata

Fig 3.3

foo—f fi— i
i: i+1, ] i, +O(AX) i:M-{-O(Ay)
Fors AX oy Ay

foi—f,, fii—fi
ﬂ: i,j i-1,j —I—O(AX) i:”—'kl—i—O(Ay)
OX AX oy Ay
o _ i i-1,j n O(AX)2 N 1Y 5 S 1Y e 8 + O(Ay)2
OX 2AX oy 2Ay
2% f —2f 4+ f 0 f -2+
0 ];‘ _ Fi "ZJ + T +O(AX)2 0 z _ i+l |,21 + 1o +O(Ay)2
ox AX oy Ay

3.2.1 Validita della soluzione numerica

La figura 3.3 fornisce uno schema dei passi richiesti, e alcuni dei termini
chiave usati per assicurarci che i risultati ottenuti siano in effetti la soluzione
dell’equazione alle derivate parziali originale.

I termini introdotti richiedono un’ulteriore definizione e discussione:

e discretizzazione

e consistenza

e stabilita

® convergenza
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Prima di definire questi termini, consideriamo come esempio la semplice
equazione differenziale lineare parabolica” seguente:

ou o’u
3.19 —=—qg—
( ) ot “ ox?

Discretizziamo ’equazione utilizzando le approssimazioni (3.18):

AX?

k 4 k
At o'u
— +
12

+o—
2 ox*

I
S

ox: At AX?

2 K+l _ 1k 2
(3.20) M_Ou_u—u a (uk —2uik+ui"_1)+ _ZTIQJ

i+l

dove usiamo I’indice in alto per denotare il tempo e quello in basso per
denotare la posizione spaziale. Nella (3.20) I’equazione alle derivate parziali
(PDE) ¢ convertita in un’equazione alle differenze finite (FDE). L’errore di

Y

troncamento ¢ O(At)+O(Ax)*. Da questa semplice equazione, possiamo

definire i termini anzidetti:

discretizzazione

Questo ¢ 1l processo di sostituire le derivate con le approssimazioni alle
differenze finite. Sostituendo le derivate continue con un’ approssimazione in
un insieme discreto di punti (la griglia), si introduce un errore dovuto al
troncamento che nasce dall’approssimazione alle differenze finite e dal modo
di trattare le condizioni al contorno. Riesaminando la rappresentazione in serie
di Taylor, ad esempio della derivata parziale prima:

of | _ f(x +A0)- f(xO—Ax)+Ax2 o’ f
2AX 6 ox’

(3.21)

possiamo notare che I’errore di troncamento dipende localmente dalla
soluzione®. Nella maggior parte dei casi ci aspettiamo che Derrore di

discretizzazione sia pitl grande dell’errore di arrotondamento®.

La diffusione o la conduzione di calore in un mezzo isotropico, il flusso di un fluido attraverso un mezzo poroso, la
persistenza della radiazione solare, ed altre situazioni ancora possono essere modellate attraverso ’equazione parabolica

ou

—=V-: ((ZVU) dove X pud essere costante, una funzione delle coordinate spaziali o ancora una funzione di U o

ot

VU o entrambe. I problemi fisici che possono essere modellati con ’equazione parabolica sono molto diffusi.
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consistenza

Una rappresentazione alle differenze finite di una PDE ¢ consistente se la
differenza tra la PDE e la sua rappresentazione alle differenze FDE si annulla
quando la griglia ¢ resa piu fine:

(3.22)  lim (PDE-FDE)=0

griglia—>0
Ad esempio se I’errore di troncamento ¢ O(%). In questo caso dobbiamo far
X

si che la griglia va a zero proprio come:

(3.23)  lim (ﬂjzo

At AX—0\ AX

stabilita

Uno schema ¢ stabile numericamente se gli errori non crescono dopo ogni
iterazione, cosi:

crescita dell’ errore -> instabilita

diminuzione dell’ errore  -> stabilita

La stabilita spesso determina il passo della griglia di discretizzazione.
convergenza

La soluzione della FDE dovrebbe tendere alla soluzione della PDE quando la
griglia viene resa piu fine. Nel caso di un’equazione lineare ¢’¢ un teorema
che dimostra che la soluzione numerica alla FDE ¢ in effetti la soluzione
dell’equazione differenziale alle derivate parziali originale.

Teorema di equivalenza Lax-Richtmyer: per un problema lineare a valore
iniziale, ben posto®, con una rappresentazione alle differenze finite
consistente, la stabilita & condizione necessaria e sufficiente per la

convergenza.

3 .
Per AX —> 0 Perrore va a zero,ma quando AX assume un valore finito,

> f

3 puod assumere valori grandi nei punti in
X

cui la soluzione varia rapidamente

4 C’¢ un limite inferiore alla misura del passo AX dovuto all'uso dell’aritmetica a lunghezza finita; al di sotto l’errore di
arrotondamento diventa importante. Nella maggior parte dei casi il passo utilizzato nei calcoli alle differenze finite € pit
grande del limite imposto dall’errore di arrotondamento.

> Possiamo asserire che un problema fisico &€ ben posto se la sua soluzione esiste, € unica e dipende in maniera continua
dai suoi dati ausiliari, cioé dalle condizioni al contorno.
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T

k-1 | k k+1

Fig 3. 4

In pratica, ¢ necessario condurre esperimenti numerici per determinare se la
soluzione sia convergente in funzione del passo della griglia.

Fin qui abbiamo rappresentato la PDE attraverso una FDE nei punti i,n. La
PDE ¢ ora un insieme di equazioni algebriche scritte per ogni punto della
griglia. Nelle tre dimensioni la griglia ¢ definita da IMAXx JMAX x ZMAX
punti. Vediamo ora come possiamo ottenere la soluzione per ogni punto della
griglia.

3.2.2 Schema esplicito

Usando la notazione di figura 3.4, scriviamo la FDE della (3.19) come:

k+1 k
(324) A= (ul o)

dove la soluzione al passo k ¢ nota. All’istante k+1 c’¢ solo un incognita.

Risolvendo :

(3‘25) uik+1 = uik +Z_§;[(uik+1 _2uik + uik_l)
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k-1 | k k+1

Fig3.5

¢ cosi per ogni | possiamo ricavare algebricamente u*', per sostituzione.

L’inconveniente di questo schema, particolarmente semplice, € che per essere
stabile richiede un passo molto piccolo.

3.2.3 Schema implicito

Usando la notazione di figura 3.5, scriviamo la rappresentazione alle

differenze finite della (3.19) come:

k+1 k
(3.26) 4 = W AO)‘(Z (! =20 + Ul

dove stiamo usando le derivate spaziali calcolate all’ istante k+1.

In questo modo otteniamo un sistema dove in ogni punto i, u‘"

dipende da

tutti 1 valori all’istante k+1. Questo conduce ad un sistema di equazioni che
deve essere risolto.

Definendo
(3 27) r= CZF

possiamo riscrivere 1’equazione (3.26) come:

(3.28)  —rut+(1+2n)uf —ruft =uf peri=1,..,N.

i+l i
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i+1

)
L/

C|>

)
\/

k-1 I k k+1

Fig 3. 6

Questa pud essere messa in una forma matriciale particolarmente semplice,
nota come forma tridiagonale.

Lo schema implicito richiede la soluzione di un sistema di equazioni ad ogni
passo ma la stabilitd permette di scegliere un passo di griglia piu grande. E
anche possibile usare una media delle approssimazioni alle linee k e k+1,
figura 3.6, invece dell’equazione (3.28). Tuttavia un’espressione piu generale
puo essere ricavata attraverso l’introduzione di un fattore di “carica” A,
utilizzando il quale ’equazione (3.28) diventa:

(3.29) A +A+2r U —r AU =rA-u +H[1-2rA- DU +r- D, peri=1,...,N.
E interessante osservare che per A=0 riotteniamo la formula esplicita, per
A=1 la formula puramente implicita, mentre nel caso in cui 2=0.5 si ottiene
la formula di Crank-Nicholson.

Una forma di questo tipo, si presta in maniera quasi naturale ad essere
implementata attraverso programmi MatLab, come mostrato in Appendice C,
inoltre pone interessanti possibilita di studio della stabilita della soluzione
ottenuta con D’approssimazione alle differenze finite usando il metodo

implicito, attraverso lo studio delle matrici, anche se al crescere degli
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Fig 3.7
elementi, tali matrici possono diventare molto grandi e quindi richiedere tempi

di calcolo eccessivi.

3.2.4 Condizioni al contorno

Finora abbiamo ottenuto le espressioni per 1 punti interni della griglia,
comunque dobbiamo ancora analizzare col metodo delle differenze finite le
condizioni al contorno . Consideriamo che normalmente c¢i sono due tipi di
condizioni al contorno: 1) il problema di Dirichlet, dove U viene specificata

sul contorno, e 2) il problema di Neumann, dove viene specificato il gradiente

normale alla superficie, 2—: Per il problema di Dirichlet, 1 valori che la

funzione deve avere sul contorno sono specificati direttamente e nessuna
formula speciale viene richiesta. Per il problema di Neumann, il modo piu
semplice per implementare le condizioni al contorno ¢ di aggiungere dei nodi
immaginari ai lati della griglia. Osservando la fig 3.7 vediamo che il contorno
¢ alla linea jJ=NY. Assumendo di aggiungere un’altra riga in j=NY+1, la

condizione al contorno in j=NY ¢ :

% — O — ¢i,NY+1 _¢i,NY—1 _I_O(AY )2

on YNY+1 T OINY -
e per assicurarci che la condizione al contorno sia soddisfatta, definiamo:
¢i,NY+1 = ¢i,NY—l
Le equazioni sono poi risolte per Yyy € quando necessitiamo di ¢ in NY+1,

semplicemente usiamo il valore in NY-1.
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3.2.5 Analisi della stabilita

L’analisi finora presentata per risolvere 1 problemi governati da equazioni
differenziali appare decisamente semplice. In molti casi non riusciamo ad
ottenere una soluzione. Frequentemente la ragione di cid ¢ da additare nella
scelta di un algoritmo numerico intrinsecamente instabile. In questa sezione
presentiamo uno degli approcci classici alla determinazione dei criteri di
stabilita: I’analisi di stabilita di Von Neumann. L’approccio di Von Neumann
alla stabilita si basa sull’analisi di Fourier e quindi ¢ generalmente limitata a
PDE lineari e a coefficienti costanti®.

Consideriamo 1’equazione (3.19) :

ou  ou
—_— = —
ot ox’
ed esaminiamo la stabilita della rappresentazione esplicita data

dall’equazione (3.24) e qui riscritta come:

uxt+ AAti —uh Aaz (U(X + AX, 1) —2u(X,t) + U(X — AX, 1))
X

(3.30)

Assumiamo che all’istante t=0, venga introdotto un errore della forma:
(3.31)  u(x.t)=w(t)e”™
dove g ¢ una costante reale.

Sostituendo la (3.31) nella (3.30) e risolvendo per y(t+At):

2
(3.32) At ii(
w(t+Ane” =y (e +a—syhel (e ~2+e iy
X

w(t+ At)ejﬁx - ‘//(t)ewx —a w(t) {ejﬁ(x+Ax) _eifx ejﬂ(x—Ax)}

notiamo che i terminie’”* si cancellano, ¢ 1’equazione precedente pud essere

riscritta come:

_ At _ g AU
w(t+At) = y/(t)[l +a o ( 2+2cos ,BAX)} l//(t)‘:l 2a o (1 cosﬁAX)}

At .2@}

(3.33)
w(t+At) = y/(t)[l - 4anm 5

® Osserviamo che 1’analisi di Von Neumann non include I’effetto dei contorni spaziali, che possono influire sulla
stabilita effettiva.
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definendo un fattore di amplificazione G, come rapporto di w(t+At) su w(t),

abbiamo:

34 :M:{_ ﬁ-zﬂ]
(3.34) G O 1-4a oz Sin yij 5

La stabilita richiede che :
G| <1
cosi che I’errore sia decrescente.
Essendo g arbitrario e osservando che il valore massimo del seno € uno, la

condizione di stabilita diventa:

<1

(3.35) ‘1_4(1 At

XZ

e in definitiva questo significa che:

At 1
<_

(336)  r=a c<;

Ci0 pone le condizioni su AteAx perche I’equazioni del modello siano stabili.
Un analisi analoga della rappresentazione implicita ,eq.(3.26), dimostra che

essa € incondizionatamente stabile:

(t+At) ‘ 1 ‘
(3.37) |G|:§W B IZ At !
v ‘[1+4azsin2ﬂ}

AX 2

e per I’arbitrarieta di g possiamo porre sin’ ,B% =1 per cui abbiamo:

v | ‘[1+4a}
AX?

<1  Sempre!

Analogamente si ottiene la stabilita per lo schema generale della (3.29):

At ., AX
do——sin” f—
AX® P 2

<1

t+ At
(3.39) |G|:‘l//(;t) —|i- £ —
w(®) [1+4a2ﬁsin2ﬂ}‘
AX 2
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osserviamo che per 4 =0 ritroviamo la condizione di stabilita vista prima per
lo schema esplicito. Se poi poniamo sin’ ﬂ%:l, abbiamo la condizione di
stabilita:

(3.40) ;Lz(l— Azxj

2 4doAt

da cui risulta che sia il metodo completamente implicito, A =1, che quello di
Crank-Nicholson, 2=0.5, sono stabili. In pratica un qualsiasi valore di 2
nell’intervallo [0.5,1] ci garantisce la stabilita incondizionata’.

Tuttavia noi, per lo studio della stabilita ci rifaremo alle osservazioni

effettuate da Crandall che ha riassunto i suoi studi in un unico grafico che

A
A
| - nessun modo
oscilla A=1-1/(4r)
errore di
tronc.O[(Ax)*] A=0.5(1-1/6r)
12—
A=0.5(1-1/2r)
instabile
' >
1/6  1/4 12 1 r

racchiude la stabilita, la possibilita di oscillazione e I’errore di troncamento
dell’equazione (3.19). Per quanto detto fino a questo punto sembra che il
metodo implicito sia di gran lunga migliore del metodo esplicito, ma come
vedremo il metodo implicito da vita a notevoli problemi di convergenza verso

la soluzione esatta.

7 Naturalmente, la stabilita da sola non ci garantisce che I’evoluzione del fenomeno fisico sia correttamente simulata, e
il passo temporale dovrebbe essere scelto in modo da non eccedere i vincoli temporali caratteristici del fenomeno
osservato.

-53.-



3.3 Equazione della diffusione

Applichiamo ora quanto ottenuto nel caso generale di un’equazione
differenziale lineare del tipo parabolico all’equazione di nostro interesse, €
cioe:

(3.41) g—::v-{Da(n)Vn}—U(an

(dove abbiamo sottinteso la dipendenza dalle incognite x,y,z.t), con le

seguenti condizioni al contorno (di Neumann)

(3.42)  (D,Vn)-A| =Sn[,
dove D,(n) ¢ il coefficiente di diffusivita ambipolare, ¢ dove U(n) ¢ la

velocita di ricombinazione nel volume; in appendice al capitolo sono
presentati i modelli usati per esprimere la loro dipendenza da n. Inoltre ¢ nota
la funzione, g(x,y,zt), di generazione dei portatori minoritari nelle coordinate
spaziali.

Allo scopo di approssimare la (3.39) con uno schema alle differenze finite
osserviamo che:

(3.43) v-{D,Vn}=D,V’n+VD,-Vn

per cui:

(3.44) 2—?:Da(n)V2n+VDa(n)-Vn—U(n)+g

3.3.1 Caso monodimensionale

Iniziamo a risolvere col metodo delle differenze finite nel caso
monodimensionale, estenderemo poi le considerazioni al caso bidimensionale.
La nostra PDE diventa nel caso di una dimensione spaziale:

N _p (2N, P:(n) n
(345)  S2=D,(m) T3+ T2 -U (n)+ 005 (1)
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X=xA x

O nodo dove la concentrazione € nota per le condizioni iniziali
[] nodo immaginario necessario per trattare le condizioni al contorno di Neumann
A nodo dove la concentrazione € incognita

Fig 3. 8

Ci0 che faremo ¢ di dividere la nostra lunghezza d in m incrementi spaziali

uguali, ognuno di ampiezza — (griglia uniforme). Se, quindi, siamo
m

interessati ad osservare la concentrazione dall’istante t, a t,, allora possiamo

dividere I’intervallo temporale in p incrementi uguali, ognuno di ampiezza

tf _to

. Vedi figura 3.9. Al passo 1, conosciamo tutti 1 valori della funzione, n,

all’istante t,, in quanto dati dalla condizione iniziale:

) e )

(346) g0 =| Ny(I-Rja=——"C
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dove R ¢ il coefficiente di riflessione delle superfici laterali, o« ¢ il
coefficiente di assorbimento ottico alla lunghezza d’onda dell’impulso laser®

ed N, ¢ il numero di fotoni incidenti sulla superficie del campione per unita di
area. Ai passi successivi tutto cio che vogliamo ¢ di ottenere n({x}.t,)da
n({x},t,) sui nodi interni e n(x,,t),n(x,t)sul contorno’.

Discretizzazione

Scriviamo le approssimazioni alle differenze finite per le derivate temporali e

spaziali:
k+l _k
G.47)  [D) L0 =n Vi
at ), At
k
8_n ~ nik+l — nik—l vk
(3.48) oX J; 2AX
. onY  n¥ —2nf+nk,
| & 3 vk
ox~ ). AX
sostituendo nella (3.43)"°
r]ikJr1 — nik = 1| D! nik—+11 _2nik+1 + nik++11 + (GDa )M nik:11 — nik-+11 Ut |+
(3.49) A R x ) o
+(1 _ ﬂ) DX nik—l — 2nik + nik+1 + (aDa )k nik+1 — nikfl —Uk
N AX? X ), 2AX '
e riordinando
+ + + K+l ey +
r]i|<+1 _ nik + At D:iﬂ nik—ll _2Aﬂik21 + r]ik+11 +(86Daj nik+112; nik—ll _Uik+1 +
X X ), X
3.50
(3-59) n, —2n*+n*, (oD, n‘, —n
+At(1—ﬂ) Dk_ i—1 i i+1 _'_( aj i+1 i-1 _U_k
N AX? X ) 2Ax '

8 Considereremo i casi di alto coefficiente di assorbimento, & = 292Cf‘[171 , corrispondente ad una lunghezza d’onda di
A= 0904,um che é emesso da un laser di GaAs; ed il caso di basso coefficiente di assorbimento, & = 10cm™ che
corrisponde ad una lunghezza d’onda di A=1.06 AMM di un laser Nd:Yag.

D’ora in poi scriveremo ni" al posto di n(xi’tk) cosi che:

i sottoscritto designa l'incremento spaziale
k soprascritto designa l'incremento temporale

1

10 Osserviamo che per A = 0 riotteniamo il metodo esplicito e per A =1 il metodo implicito; a A=— corrisponde il metodo di Crank-

Nicholson.
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AtD At oD . .
osto C,=—=2,B = a e raggruppando,ponendo tutte le incognite
p T X T Ax ox ggrupp p g

(all’istante k+1) a destra e quelle (all’istante k) note a sinistra :

X i+1

151 _ l(Ck_H B;ﬂ) nik:;l +(1 +2C>l:i+1 /1) nik+1 _ /1((:;+1 + B;ﬂ) nk+1 _
B> (1-2)(Cf — B ), +[ 1-2C5 (1= ) | +(1—2)( C + B ) nfy, — AL — At(1 - 2)UF

se definiamo

‘]diag = (1 + ZCXﬂ,), ‘Jlx = _(Cx + Bx)ﬂ" ‘]hx = _(Cx + Bx)ﬂ'

Ryag =[1-2C,(1- D], R, =(C, —=B,)(1-4),R, = (C, + B)(1- 1)
possiamo riscrivere 1’equazione (3.48) come

(3.52) 3y g 4 30 = RN+ Ry MR — AU — A(1- AU

Ixi diagj il xi |-

Queste equazioni valgono per tutti i nodi interni."’

Per ogni i, la (3.52) ci da un sistema di equazioni algebriche lineari; che
possiamo risolvere con le regole dell’algebra lineare. Infatti, il sistema dato
dalle equazioni (3.52) , per ogni i, pud essere riscritto come:

(3.53)  n*'=R

la cui soluzione per J =0 ¢:

(3.54) n“'=J7R

La matrice J & chiamata anche jacobiano'?, e il vettore R residuo.

Condizioni al contorno

Considereremo ora le condizioni al contorno (tipo Neumann) nella loro forma

piu generale monodimensionale:

(3.55) D, _ssn
OX

utilizzando I’approssimazione alle differenze al centro, per la derivata spaziale

abbiamo all’istante k+1:

H Quando abbiamo condizioni al contorno di Dirichlet, un nodo interno ¢ un qualsiasi nodo tranne quelli sul contorno
stesso. Quando abbiamo condizioni al contorno di Neumann, siamo forzati ad aggiungere un nodo immaginario ai lati
estremi; cosi un nodo interno € un qualsiasi nodo tranne quei due nodi immaginari (e quindi in questo caso dobbiamo
includere nei nodi interni anche i nodi che si trovano sul contorno nel caso di condizioni di Dirichlet).

12 Osserviamo che per mintervalli spaziali, ci sono m+I nodi. Per condizioni al contorno di Dirichlet, se ci sono m+1
nodi allora ci sono m-1 nodi interni e quindi m-1 incognite. La matrice J € una matrice di dimensioni m-1 x m-1. Per
condizioni al contorno di Neumann, ci sono m+3 nodi spaziali (a causa dei nodi immaginari ai lati), e quindi m+3
incognite. La matrice J ha dimensioni m+3 x m+3.
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k+1 k+1

(3.56)  D'| M ~Nar | jghepke
) 2AX o

riordiniamo, come fatto per la PDE, mettendo tutte le incognite all’istante k+1

sul lato sinistro e il resto sul lato destro
D %<+1 D }(H
(3.57) -] = In%' mS i +] =2 nf =
2AX 2AX

Quest’equazione verra usata per tutti i nodi immaginari creati per trattare le

condizioni al contorno di Neumann.

3.3.2 Caso bidimensionale
L’estensione al caso bidimensionale ¢ chiara. La PDE parabolica diventa nel

caso di due dimensioni spaziali

on
(3.58) re Da(n){

o™n 62n} LB on DM Ny 4 gex,y)5(0)

<3x2+8y2 ox oOx oy oy

Ci0 che faremo ¢ di dividere la nostra dimensione spaziale X in m, incrementi,

ognuno di ampiezza —. In modo simile, divideremo la nostra dimensione
m

X
. . . e L, S .
spaziale y in m, incrementi, di ampiezza —-. Se, poi, siamo interessati ad
m
y

osservare la concentrazione dall’istante t, a t,, allora possiamo dividere

0

. . . . . . . t, —t .
I’intervallo temporale in p incrementi uguali, ognuno di ampiezza 2 Vedi
P

fig.3.9. Al passo 1, conosciamo tutti 1 valori della funzione, n, all’istante t,,
perche questi sono dati dalla condizione iniziale:

) e )

(3:59) g0y = Ny(I-Rja——"—2

5(y)
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—se

R

(i)

i=0 i=1 =2 i=3 i=4 =3 i=6 =7 i=8

Fig3.9
In generale quello che vogliamo ¢ ottenere n({x,y}.t,,) da n({x,y}.t) e

n({x.y,}.t) e n({xm,ym},t).13
Discretizzazione

Scriviamo le approssimazioni alle differenze finite per le derivate temporali e

spaziali:
an k+l n_k_
3.60 — . Vij
con (g < x
[a_n) I+] j nlkl j Vk]
OX 2AX ’
(3.61) i
on N, i— 2n i+ nI+ .
{WJ s TR
(a_j ~ I ]+l nlkj 1 \v/k 1
0 2AY ’
(3.62)
(a j ~ I ] -1 Zn . + r]I j+1 Vk,l
y? i y

sostituendo nella (3.54)

3
D’ora in poi scriveremo n j al posto di I'](XI 5 yJ ,t ) cosi che:

i sottoscritto designa 11ncremento spaziale lungo la coordinata x
j sottoscritto designa l'incremento spaziale lungo la coordinata y
k soprascritto designa l'incremento temporale
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o L PG ()

(3.63)
(12D Ty =215 +1, ,ffj+1—2ffj+ I J{ij (@Y -
. AC M X Lj 2 @/ ij 2& !
posto CX:M—Da B _ At D, c 4D, p A oD, e raggruppando, ponendo

AT 2Ax ox Y Ay T 2Ay oy
tutte le incognite (all’istante k+1) a destra e quelle (all’istante k) note a
sinistra:

B A G B85 A {2 A G A o B A G 5 A
(3.64) (G, —B) -t {8 -t 125 022G (- T HC + -f:)a—ﬂ)rhw

G+ B (-~ -2t A

se definiamo

Jieg =(1+2C,2+2C 2),3,, =—(C, +B,) 1,3, =—(C, +B, ) 4,
J,=—(C,-B,) 4., =—(C,—B,) ARy, =[1-2C,(1-1)+2C (1-2) .

Ry, =(C,+B)(1-2).R, =(C, +B,)(1-4).R, =(C,-B,)(1-2).R,=(C,-B,)(1-2)
possiamo riscrivere 1’equazione (3.59) come

K+l k+1 K+1 _k+1 K+1 _k+1 K+l _k+1 K+l k+l
Jy, FRLNE + i Mo+ Jatag; BRLY + 0 N Ty, L

(3'65) k+1 k
= RlyI i,j— 1+RI><|] i-1, ] +Rd|ag n +Rh><|1 i+1, j +Rhy Ij+1 Atw|] _At(l_/uulj

Queste equazioni valgono per tutti i nodi interni alla griglia."

Ancora abbiamo un sistema di equazioni algebriche lineari, la cui soluzione in
termini matriciali puo essere scritta, per J #0 come:

(3.66) n*'=J"R

. . . 1 . . - .
dove la matrice J & lo Jacobiano," e il vettore R ¢ il residuo.

14 Vedi nota 5.

' Se ci sono mx intervalli spaziali nella direzione x, ci sono mx +1 nodi nella direzione x. Se ci sono my intervalli
spaziali nella direzione y, ci sono my + 1 nodi nella direzione y. Per condizioni al contorno di tipo Neumann , se ci sono
(m, + 1)(my +1) nodi nella griglia allora ci saranno M, = (M, + 3)(my + 3) incognite. La matrice J & una matrice di

dimensioni M, XM, .
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Condizioni al contorno
Considereremo ora le condizioni al contorno (tipo Neumann) nella loro forma

piu generale bidimensionale lungo la direzione x:

(3.67) D, _ssn
OX

utilizzando I’approssimazione alle differenze al centro, per la derivata spaziale
abbiamo all’istante k+1:
K+1 k+1
k+1 ni+l,j B ni—l,j _ K41 k+1
(3.68) D, (T} =+5"n

riordiniamo, come fatto per la PDE, mettendo tutte le incognite all’istante k+1

sul lato sinistro e il resto sul lato destro

D. X! D. X!
(3.69) —( _ ]nr*f,- msr;‘nr?{ L ksl =0
X , FRL) ,

2AX

Quest’equazione verra usata per tutti 1 nodi immaginari creati per trattare le

condizioni al contorno di Neumann.
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Appendice al Capitolo 3

A.3.1 Diffusivita ambipolare

Al fine di poter lavorare anche ad alti livelli di iniezione in luogo del
coefficiente di diffusivita ricavato dall’equazione di Einstein, si ¢ usato la
diffusivita ambipolare D, [25] data dalla seguente espressione:

_ D,D,(n+ p)

3.70 D
( ) D,n+D,p

a

che, a bassi livelli di iniezione si riduce alla diffusivita dei portatori minoritari

D, per un semiconduttore di tipo p oppure D, per un semiconduttore di tipo n.

Inoltre come ¢ possibile notare osservando 1’equazione (3.41), si ¢ trascurato
il contributo del campo elettrico dovuto alla differenza di mobilita tra elettroni
e lacune. Si pud dimostrare che data la densita di corrente per elettroni e
lacune, (per semplicita ci limiteremo alla trattazione nel caso

monodimensionale):

p
‘]p :q/uppE_qu X

(3.71) ; g
J. =qunE +an8—)r::0nE+an n

g
=o,E-qD, p

e considerando I’equazione di continuita per elettroni e lacune, posto il

termine di generazione uguale a zero, abbiamo:

B __y_ 1%,
(3.72)  6,=26,= a q

on 14,

_:_U + =

ot g ox

se ora eseguiamo la derivata spaziale dell’equazione (3.71):

%o o, Evqu, PE-aD, b
2 2 -, GpETUu, PE-QU,
67 Rt w T
g g 2

X”:anE+qyan+anp

e sostituiamo il valore di Z—J nell’equazione (3.72) otteniamo:
X
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0J
AUl e e,
(3.74) 5 ?&] ?
g g &
P_ yii%_ y +—{an E+qu, PE+AD, p}
ot q Ox q

Moltiplichiamo ambo 1 membri dell’espressione (3.74) per, rispettivamente,

o, € o, ottenendo:

Uaa—i) —O'U—%{O‘O‘ E+UQyppE 0,4D, p}

op

(3.75) P g .
O'pE:—JpU +a{6n0'p E+qu,un pE+quDn p}

0 1 g g e 2
(3.76) a@—f =-oU +a{—anqyp PE+o,qu, PE+0,0D, p+0,0D, p} =

dove o =0, +0,,

(3.77) —O‘U+%{ 0,0, E+0'0' pE+qp(0'D +o,D )}

| —

(3.78) =-oU+—40,0,P E ——+%j+qp(aD +0,D )}

(3.79) =—oU +

—— O

E)E( —o.U +0'pyn) ﬁ(anDerO'pDn)}:

(3.80) g—i’:—u—{ée{w}ﬁ(Mj}

o o

Arrivati a questo punto se scriviamo:

O\H, — O i, n- p N

B8y DT, (020 L, No
o N, + Py N, + Py

(3.82) c,D,+0,D, _ ,ND, + 1,pD, _ D,D,(n+p) _D
o M+ 41, P D,n+D,p ¢

Inoltre se esprimiamo il campo elettrico E nel seguente modo:

g
J,=0,E-qD b, ~D,
p=pE—0 pp:>3=0=Jn+Jp=aE+q(Dn—D)PzE—_q@

oX o, +to,

(3.83) :
J,=0,E+0gD,n
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trascurando il termine —

, possiamo scrivere:

n+O'p

’D,-D N
(3.84) a_p:_UN(a_p] 2 Mo g
ot OX) o,+0, Ny, + pu,

O,

Nel caso statico, cio¢ quando a—fzo, considerando prima il caso di bassi

livelli di iniezione, trascuriamo il secondo termine a destra nell’equazione

(3.84), e ponendo D, =D, otteniamo:

dAp _ _Ap(x)

Ap d’Ap *Lp
(3.85) 0=—-—=+D,=5-=Ap(x) = Ap(0)e b= T

p p

a questo punto il terzo termine a destra dell’equazione (3.84) wvale

Ap o'p

D —=D
p g2 p 20
Lp OX

mentre 1l secondo termine vale

visto che risulta

D
2 —— 2
Ap Dn—Dp,un/,leD_D&[Dp j PAp =D£
q:unND ND:un P sz :un ND P sz ’

Consideriamo ora il caso di alti livelli di iniezione, per cui vale che

n~p? N, edin tal caso si ha:

2D,D x
(3.86) 0=-2P. D pconD, - == Ap(x) = Ap(0)e  dove L, =./7,D,
T +

a n p
Analogamente a quanto fatto in precedenza possiamo osservare che il terzo

2
Aszaag
. oX

termine a destra dell’equazione (3.84) vale p, , mentre 1l secondo

termine della stessa equazione vale:

2
(APJ Dn_Dp /un/upND -D Ap Dn_Dp HoHp ND =D Ap
L, ) aQuy + 1)AD (s, + u)Ap  * Lo | D, (a4, +u,)" Ap ‘L

Alla luce di quanto dimostrato si vede che I’approssimazione di considerare il

campo elettrico trascurabile nell’equazione (3.41) ¢ lecita.
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A.3.2 Velocita di ricombinazione netta

Il simulatore per quanto riguarda la velocita di ricombinazione ¢ in grado di
supportare una relazione del tipo:

(3.87) U=Ug, +U

Auger + U dir

dove i termini presenti nell’equazione (3.88) sono dati da:

2
388) U = PR~ Me
G Ve (E0)] e, 22%)
p ie p kT np ie p kT

(3.89) U, = Augn(pn® —nng)+ Augp(np’ - pn;)

(390) Udir = Cdirect(np - nii)
I listati MatLab che implementano la diffusivita ambipolare, la mobilita

analitica e la velocita di ricombinazione netta descritti sopra sono riportati in

appendice B .
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Capitolo 4

Confronto a bassi ed alti livelli di iniezione

4.1 Introduzione

In questo capitolo sara effettuato il confronto tra il simulatore realizzato
attraverso la soluzione numerica dell’equazione della diffusione con il metodo
delle differenze finite, ed il modello analitico per il caso dei bassi livelli di
iniezione ed un simulatore commerciale molto affermato quale il simulatore
MEDICI per il caso di alti livelli di iniezione. I confronti saranno effettuati sia

per il caso monodimensionale che per quello bidimensionale.

4.2 Confronto a bassi livelli di iniezione tra il modello di Ling e Ajmerae
la rappresentazione alle differenze finite

4.2.1 Simulazione 1D

In questo paragrafo riportiamo una serie di confronti tra 1 risultati ottenuti con
il modello di Ling e Ajmera nel caso monodimensionale visto nel capitolo 2 e
quello ottenuto attraverso il metodo numerico delle differenze finite 1D visto
nel capitolo precedente. Le simulazioni riportate sono effettuate in regimi di
bassi livelli di iniezione e su campioni di diverso spessore, € precisamente si €
considerato campioni di celle solari sottili (200 um), normali (1 mm) e spesse
(3 mm), facendo riferimento allo spessore delle celle solari che normalmente ¢
possibile trovare in commercio. Si sono considerati inoltre sia campioni di
tipo p che di tipo n ed infine abbiamo considerato impulsi laser di diversa
lunghezza d’onda. Nelle simulazioni riportate in questo paragrafo si ¢ indicato
il risultato ottenuto con il metodo delle differenze finite con una curva a tratto

continuo, mentre il risultato ottenuto con il modello di Ling e Ajmera ¢
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indicato con dei cerchi. Per le stesse simulazioni si sono considerati istanti di
tempo diversi, presi con passo di Sus, in modo da considerare lo stesso
processo al trascorrere del tempo. Si riporta inoltre il valore di N, (t), densita

media dei portatori in eccesso di cui si ¢ detto nel capitolo 2. Tutti i grafici

sono in scala semilogaritmica, salvo avviso contrario.

Di seguito si riportano le tabelle contenenti il resoconto di tutte le simulazioni

eseguite, ed 1 relativi grafici.

Tabella 1(a=10)

Simula 10N55d02
Type N

d=200um
N=1el6cm”-3
Navg=1lel3cm”-3
S1=5000cm/s
S$2=5000cm/s
a=10cm”-1
th=500us

Simulal0N50d02
Type N
d=200pum
N=1e16cm~”-3
Navg=1e13cm”-3
S1=5000cm/s
S2=000cm/s
a=10cm”-1
th=500ps

Simula 10P55d02
Type P

d=200um
N=1e16cm~”-3
Navg=1e13cm”-3
S$1=5000cm/s
S$2=5000cm/s
a=10cm”-1
th=500pus

Simula 10P50d02
Type P

d=200um
N=1el16cm”-3
Navg=1lel3cm”-3
S1=5000cm/s
S2=000cm/s
a=10cm”-1
th=500us

Simula 10N55d1
Type N

d=1mm
N=1lel6écm”-3
Navg=1el3cm”-3
S1=5000cm/s
S2=5000cm/s
a=10cm”-1
th=500ps

Simula 10N50d1
Type N

d=1mm
N=1lel6écm”-3
Navg=1el3cm”-3
S1=5000cm/s
S2=000cm/s
a=10cm”-1
th=500ps

Simula 10P55d1
Type P

d=1mm
N=1el6cm”-3
Navg=1el3cm”-3
S$1=5000cm/s
S$2=5000cm/s
a=10cm”-1
th=500ps

Simula 10P50d1
Type P

d=1mm
N=1lel6écm”-3
Navg=1el3cm”-3
S1=5000cm/s
S2=000cm/s
a=10cm”-1
th=500ps

Simula 10N55d3
Type N

d=3mm
N=lel6écm”-3
Navg=1e13cm”-3
S1=5000cm/s
S$2=5000cm/s
o=10cm”-1
th=500us

Simula 10N50d3
Type N

d=3mm
N=lel6écm”-3
Navg=1e13cm”-3
S1=5000cm/s
S$2=000cm/s
o=10cm”-1
thb=500us

Simula 10P55d3
Type P

d=3mm
N=1el6écm”-3
Navg=1e1l3cm”-3
S1=5000cm/s
$2=5000cm/s
a=10cm”™-1
th=500ps

Simula 10P50d3
Type P

d=3mm
N=1el16cm~”-3
Navg=1e13cm”-3
S1=5000cm/s
S2=000cm/s
o=10cm”-1
th=500us
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Simula 10N5502

[Bo1]Gx)d

-0.008 -0.006 -0.004 -0.002 0 0002 0004 0006 0008 001
x[cm)

-0.01

2.5

15
t[sec]

0.5

10-6

[Boll@)neN

x 10
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Simula 10N50d02

P, H[log]

! ! ! ! | ! ! ! !

G
-001 -0.008 -0.006 -0.004 -0.002 0 0002 0004 0006 0008 001
x[cm]
1013(\
8 ........................................................................
0
s
©
Z
| | | | | )
0 0.5 1 15 2 2.5 3
t[sec] v 10°
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Simula 10P55d02

n(x,H[log]

6
-001 -0.008 -0006 -0.004 -0002 0 0002 0004 0006 0008 001
x[cm]
1076
'8 ..........................................................................
0
S b T
Z
............. e Oy
0 0.5 1 15 2 2.5 3
t[sec] -6
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n(x,t)[log]

Nav(t)[log]

Simula 10P50d02

-0.01 -0.008 -0.006 -0.004 -0.002 O 0002 0004 0006 0008 001

x[cm)
10
| | | | | )
0 05 1 15 2 2.5 3
t[sec] -6
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Simula 10N55d1

P, Dllog]

-0.05 -004 -003 -002 -0.01 0 00l 002 003 004 005
x[cm)
1013
fo)
0
3
Z
............. B TR SRR AR ek )
0 0.5 1 15 2 2.5 3
tsec] v 10°
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—

o
—
w

P, H[log]

Nav()[log]

Simula 10N50d1

| | |
D . T%%eg
)/ e S SV NP DD
g o o e o S o o ]
-0.05 -004 -003 -002 -0.01 0 000 002 003 004 005

x[cm)

l l l l l )
0 0.5 1 15 2 2.5 3
t[sec] v 10°

-73 -



Simula 10P55d1

n(x,t)[log]

106

Nav(t)[log]

| | |
| | | | I | | | I
-005 -004 -003 -002 -001 0 001 002 003 004 005
x[cm)
| | | | | )
0 05 1 15 2 2.5 3
t[sec] v 10°
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Simula 10P50d1

I I I
1013_ ...... FJD e I AT .
= U/ / N o < N
o) |
Y I A S S S - G
S AT U SO SUUNU DURURE Y. oo -~
€
[ S—— L. ..... L. ... .. ... L. . ... J ....... L. ..... L. ... .. lL...... L. ... _
-0.05 -004 -003 -002 -0.01 0 001 002 003 004 005
x[cm)
10"
o
k)
3
Z
| | | | | )
0 05 1 15 2 2.5 3
t[sec] v 10°
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Simula 10N55d3

13

10

(o)
0
%
Z

| | | | | 0

0 0.5 1 15 2 2.5 3

f[sec] v 10°
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Simula 10N50d3

................................... e L
glolg e O S O S
TR B
d éﬁfﬁfﬁfﬁfﬁfﬁﬁﬁﬁfﬁfﬁfﬁfﬁfZﬁﬁﬁﬁﬁfﬁfﬁfﬁfﬁﬁﬁ]_f'fﬁfﬁﬁﬁﬁﬁﬁﬁﬁfﬁfﬁfﬁfﬁﬁﬁﬁﬁﬁfﬁfﬁfﬁ
; . . ; ;
-0.1 -0.05 0 0.05 0.1 0.15
x[cm
1013 ‘ ‘
5 | |
0 | |
S I I
q | |
z ] ]
; . . ; ; b
0 0.5 1 15 2 2.5 3
f[sec] v 10°
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Simula 10P55d3

................................. e
13
10giﬁZIZIZfifiliiiiﬁiﬁififi[iu S
T LTy ]
S TSN ]
g': .......................................................................
S R T N
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S T O DR RS TSSO
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x[cm
1013(\
5 ? ?
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Simula 10P50d3
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Bl TR i
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B e
X f B
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Tabella 2(a=292)

Simula 292N55d02
Type N

d=200um
N=1e16cm~”-3
Navg=1e13cm”-3
S$1=5000cm/s
$2=5000cm/s
a=292cm”-1
th=500ps

Simula292N50d02
Type N

d=200um
N=1el16cm~”-3
Navg=1e13cm”-3
S$1=5000cm/s
S$2=000cm/s
a=292cm”™-1
th=500ps

Simula 292P55d02
Type P

d=200um
N=1el16cm”-3
Navg=1lel3cm”-3
S1=5000cm/s
S2=5000cm/s
o=292cm”-1
th=500us

Simula292P50d02
Type P

d=200um
N=1e16cm~”-3
Navg=1e13cm”-3
S$1=5000cm/s
S$2=000cm/s
a=292cm”™-1
th=500ps

Simula 292N55d1
Type N

d=1mm
N=1el6cm”-3
Navg=1el3cm”-3
S$1=5000cm/s
S$2=5000cm/s
a=292cm”™-1
th=500ps

Simula 292N50d1
Type N

d=1mm
N=1el6cm”-3
Navg=1el3cm”-3
S1=5000cm/s
S2=000cm/s
a=292cm”™-1
th=500us

Simula 292P55d1
Type P

d=1mm
N=1lel6écm”-3
Navg=1el3cm”-3
S1=5000cm/s
S$2=5000cm/s
a=292cm”™-1
th=500us

Simula 292P50d1
Type P

d=1mm
N=1el6cm”-3
Navg=1el3cm”-3
S$1=5000cm/s
S2=000cm/s
a=292cm”™-1
th=500ps

Simula 292N55d3
Type N

d=3mm
N=1el6cm”-3
Navg=1el3cm”-3
S1=5000cm/s
$2=5000cm/s
a=292cm”™-1
th=500ps

Simula 292N50d3
Type N

d=3mm
N=1el6cm”-3
Navg=1el3cm”-3
S1=5000cm/s
S2=000cm/s
a=292cm”™-1
th=500ps

Simula 292P55d3
Type P

d=3mm
N=1lel6écm”-3
Navg=1el3cm”-3
S1=5000cm/s
S$2=5000cm/s
a=292cm”™-1
th=500ps

Simula 292P50d3
Type P

d=3mm
N=1el6cm”-3
Navg=1el3cm”-3
S1=5000cm/s
S$2=000cm/s
a=292cm”™-1
th=500ps
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Simula 292N55d02

O U P S B A | P U T R .
5
9 B A o N N S
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- O O N
Z
| I I | | \)
0 05 1 15 2 2.5 3
t[sec] v 10°
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Simula 292N50d02
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n(<, [log]

Nav()[log]

Simula 292P50d02
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Simula 292N55d1

l l l
—10°F .
o))
0
Q
10° b -
A S T T S SR
-005 -004 -003 -002 -0.01 0 001 002 003 004 005
x[cm)]
10
RN S S
0 i i
O ............ o
_ ON |
g» 0) ) ‘
E ............. T O ..... e e e e e e e e e e e e e e e e s A
S 0
{0
2 SO O O R
| | | | | \)
0 05 1 15 2 25 3
f[sec] v 10°

-84 -



Simula 292N50d1
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Simula 292P55d1
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Simula 292P50d1
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4.2.2 Simulazione 2D

In questo paragrafo riportiamo una serie di confronti tra 1 risultati ottenuti con
il modello di Ling e Ajmera nel caso bidimensionale visto nel capitolo 2 e
quello ottenuto attraverso il metodo numerico delle differenze finite 2D visto
nel capitolo precedente. Le simulazioni riportate sono effettuate in regimi di
bassi livelli di iniezione e su un campione di tipo P di dimensioni (d=0.525cm,
h=1cm). Si sono considerati inoltre impulsi laser di diversa lunghezza d’onda.
Nelle simulazioni riportate in questo paragrafo si ¢ indicato il risultato
ottenuto con il metodo delle differenze finite con una curva a tratto continuo,
mentre il risultato ottenuto con il modello di Ling e Ajmera ¢ indicato con dei
cerchi. Per le stesse simulazioni si sono considerati istanti di tempo diversi,
presi con passo di Sus, in modo da considerare lo stesso processo al
trascorrere del tempo. Nei grafici per comodita di visualizzazione, si riportano

solo 1 valori di N_(t), densita media dei portatori in eccesso su tutto il
dominio bidimensionale € N, (x,t), densita media lungo x . Tutti i grafici sono

in scala semilogaritmica, salvo avviso contrario.
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Di seguito si riportano le tabelle contenenti il resoconto di tutte le simulazioni

eseguite, ed 1 relativi grafici.

Tabella 3
Simula 10P552D Simula 10P502D
Type P Type P
d=525um d=525um
h=10000pum h=10000pum
N=3el15¢cm~-3 N=3el15cm”-3

Navg=1e13cm”-3
S1=5000cm/s

Navg=1lel3cm”-3
S1=5000cm/s

S2=5000cm/s S2=000cm/s
a=10cm”-1 o=10cm”-1
th=300ps th=300ps

Simula 292P552D Simula 292P502D
Type P Type P

d=525um d=525um
h=10000pum h=10000pum
N=3el5cm”-3 N=3el5cm~”-3

Navg=1el3cm”-3
S1=5000cm/s

Navg=1e13cm”-3
S1=5000cm/s

S2=5000cm/s S2=000cm/s
a=292cm”-1 a=292cm”-1
th=300ps th=300ps
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4.3 Confronto con MEDICI ad alti livelli di iniezione

4.3.1 Simulazione 1D

La simulazione che ¢ stata effettuata per testare la validita del simulatore
realizzato ad alti livelli di iniezione, ¢ stata eseguita su un campione dalle
seguenti caratteristiche:

e campione di tipo n/tipo p;

e spessore d=5000 pum;

e drogaggio del campione pari a 2e12 cm™

o T, =300 ps, t,0=30us;

e coefficiente di assorbimento a=10 cm™;

e densita media Navg=lel5;

e velocita di ricombinazione superficiale S; = S,=5000 cm/s;

e coefficienti Auger C,=C,=0;

e Intervallo temporale osservato: [0,1ms];

La simulazione ¢ effettuata su un campione dalle caratteristiche appena
descritte, su cui impatta un impulso laser del tipo Ny*6(t-ty), con ty=1e-12s, su
un’opportuna interfaccia. Di seguito ¢ riportato il confronto tra I’andamento
delle lacune, p(x, ty), in cui si ¢ indicato il risultato di MEDICI con dei cerchi,

ed il risultato del simulatore numerico con una curva a tratto pieno, ed inoltre

d
¢ riportato I’andamento di p(t) = I 2 p(x,H)dx in cui la curva a tratto pieno ¢ il
2

risultato del simulatore numerico descritto al capitolo precedente. I grafici
sono tutti in scala semilogaritmica. Per quanto riguarda i listati Matlab
utilizzati per eseguire la suddetta simulazione, sono quelli riportati in
appendice C, nel caso di soluzione dell’equazione della diffusione con metodo
implicito, ma con parametro R, e cioe¢ il coefficiente che tiene in conto le
riflessioni multiple che si hanno sulle interfacce del campione di silicio,

uguale a zero, in quanto MEDICI non permette di considerare il caso in cui ci
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sia riflessione. Un’altra modifica apportata al simulatore ¢ quella che permette

di considerare la condizione iniziale, che MEDICI impone essere:

condizione iniziale= N e *"™*

Infine sono stati modificati 1 seguenti parametri:

Nsrhn=4.14¢16;
Nsrhp=1el6;
Augn=0;
Augp=0;
Cdirect=1e-15;

Di seguito si riportano le tabelle contenenti il resoconto di tutte le simulazioni

eseguite, ed 1 relativi grafici.

Tabellad
Med10N Med10P
Type N Type P
d=5000pum d=5000pum
N=2e12cm”-3 N=2el2cm”-3
Navg=1el5cm”-3 Navg=1el5cm”-3
S1=5000cm/s S1=5000cm/s
S$2=5000cm/s S$2=5000cm/s
a=10cm”-1 a=10cm”-1
tno=300ps tno=300us
Tp0=30us Tp0=30us
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4.4 Conclusioni

Da quanto ¢ possibile osservare, e cio¢ dai confronti effettuati tra il simulatore
realizzato attraverso la soluzione numerica dell’equazione della diffusione ed
il simulatore MEDICI, si puo concludere che ¢’¢ un sostanziale buon accordo
tra 1 due. Per cui possiamo senz’altro dire che il simulatore realizzato ¢
attendibile sia per bassi livelli di iniezione che per alti livelli di iniezione, e
cio¢ abbiamo raggiunto lo scopo propostoci all’inizio di questo lavoro di tesi.
Inoltre data la sua semplicita ¢ senza dubbio piu veloce di un simulatore
“general purpose” quale ¢ il simulatore MEDICI, per cui ’estrazione dei
parametri di interesse risulta certamente piu semplice e veloce. Un’altra
prerogativa dell’utilizzo di tale simulatore e della relativa procedura di
estrazione dei parametri, ¢ che si puo prescindere dai parametri stessi che €
necessario estrarre, infatti come gia detto prima 1 parametri estratti possono
essere tutti quelli da cui dipende il processo, ad esempio tra le prime estrazioni
effettuate c’¢ stato proprio il valore di Navg in modo da essere sicuri della
quantitd di drogante iniettato. Si puo inoltre osservare che la semplicita di
tale simulatore lo rende anche molto elastico e flessibile, infatti ¢ davvero
semplice modificarlo in modo da mettere in risalto un aspetto anziché un altro
del processo di ricombinazione ad esempio, nelle ultime simulazioni eseguite
la velocita di ricombinazione ¢ stata modificata aggiungendo anche la
componente di velocita di ricombinazione dovuta alla ricombinazione diretta
che inizialmente era stata non considerata dato che, per livelli di iniezione
bassi ¢ medi, il suo peso ¢ senza dubbio trascurabile essendo il silicio un
semiconduttore indiretto, ma data la scarsita di teorie disponibili per quanto
riguarda gli alti livelli di iniezione non ¢ da escludere che tale componente di
velocita possa avere un peso maggiore di quanto non abbia a livelli di
iniezione bassi, almeno per quei campioni particolarmente puri che presentano

pochi centri di ricombinazione in banda proibita.
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Questi sono solo alcuni delle possibilita che tale simulatore offre, infatti ¢
altresi semplice vedere come variano 1 parametri variando le condizioni
iniziali, ed allora sarebbe possibile individuare eventuali dipendenze tra i
parametri stessi, ma soprattutto sarebbe possibile capire come controllare i
parametri da cui dipende il processo di ricombinazione, permettendo cosi la
costruzione, ad esempio, di celle solari piu efficienti cosi come riportato

nell’introduzione.
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Appendice A

Listati Matlab utilizzati per risolvere
I’equazione della diffusione 1D/2D con tecnica

analitica per bassi livelli di iniezione

A.1 Listati Matlab per I’equazione 1D

function
[u,Nmedio]=xlinglD(x%,t,d,S0,S1,taub,alpha,Navg,Nd,Na,nmodi,R)

% Questo programma calcola 1l profilo n(x,t) o p(x,t) secondo
% 11 modello di Ling e Ajmera.

% X - coordinata x [cm]

% t - coordinata t [s]

% d : lunghezza del campione [cm]

% SO : SRV alla superficie dove comincia la generazione
[cm/s]

% S1 : SRV alla superficie opposta [cm/s]

% taub : valore del lifetime di bulk [s]

% alpha: coefficiente di assorbimento

% Navg : densita media dei portatori in eccesso [cm™-3]
% Nd - donatori [cm™-3]

% Na - accettori [cm™-3]

% nmodi: numero di  modi della serie da tenere 1n
considerazione

% R : coefficiente di riflessione agli spigoli

NO=(Navg*d*(1-R*exp(-alpha*d)))/((1-R)*(1-exp(-alpha*d)));
it Nd>Na
[muOn,muOp,Dn,Dp,D]=mobi I1ty2(Nd+NO,NO,Nd,Na) ;
else
[muOn,muOp,Dn,Dp,D]=mobi li1ty2(NO,NO+Na,Nd,Na) ;
end;
[XX,TT]=meshgrid(X,t) ; XX=XX";TT=TT";
u=zeros(size(XX));
%condizione i1niziale
a=exp(-alpha*(x"+d/2))+R*exp(-alpha*d)*exp(-alpha*(-x"+d/2));
b=1-R"2*exp(-2*alpha*d);
u(:,1)=((NO*(1-R)*alpha)/b)*a;
Y%transitorio
for k=1:nmodi,
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modo=xmodol1ng1lD(XX,TT,d,S0,S1,taub,alpha,D,k-1,NO,R);
u(:,2:end)=u(:,2:end)+modo(:,2:end);

end;

Nmedio=1/d*trapz(XX(:,1),u);

function modo=xmodolinglD(x,t,d1,S0,S1,taub,alfa,D,k,NO,R);
% Questa funzione calcola 1l singolo modo delmodello di Ling

e Ajmera.

% X - coordinata x [cm]

% t - coordinata t [s]

% di : lunghezza del campione [cm]

% SO : SRV alla superficie dove comincia la generazione
[cm/s]

% S1 : SRV alla superficie opposta [cm/s]

% taub : valore del lifetime di bulk [s]

% alfa : coefficiente di assorbimento (funzione di 1 del
laser)

% D : Diffusione [cm™2/s]

% k : singolo modo della serie da tenere in considerazione
% NO : Iivello di iniezione dei portatori [cm™-2]

% R - coefficiente di riflessione aglit spigoli

g0=NO*(1-R)*alfa/(1-R"2*exp(-2*alfa*dl));
ak=fzero("funclinglD",[1000],optimset("disp~,"off"),S0,S1,d1,
D,K);

zk=ak*d1/2;
bk=-(D*ak*cos(zk)+S0*sin(zk))/(D*ak*sin(zk)-S0*cos(zk));
den=(bk"2*(ak*d1+sin(ak*dl))+(ak*dl-
sin(ak*dl)))*(ak™2+alfan2);

numl=(1+R*exp(-
alfa*dl))*bk*(cos(zk)*sinh(alfa*d1l/2)+ak/alfa*sin(zk)*cosh(al
fa*d1/2));
num2=(1-R*exp(-alfa*dl))*(ak/alfa*cos(zk)*sinh(alfa*d1/2)-
sin(zk)*cosh(alfa*d1/2));
Bk=4*ak*gO0*alfa*exp(-alfa*dl1/2)*(numl+num2)/den;
modo=Bk.*(bk.*cos(ak.*x)+sin(ak.*x)) . *exp(-
(1/taub+ak.”2.*D) . *(t-t(1)));

function e=funclinglD(ak,S0,S1,d1,D,k);
% In questa fTunzione si trova l1%equazione trascendente di
Ling e Ajmera

% ak : zero della funzione
% SO : SRV alla superficie dove comincia la generazione
[cm/s]
% S1 : SRV alla superficie opposta [cm/s]
% di : lunghezza del campione [cm]
% D - diffusione [cm™2/s]
% k : ordine del modo
it SO==S1,
e=ak*dl-k*pi-2*atan(S0./(D*ak));
else

e=ak*dl-k*pi-atan(S0./(D*ak))-atan(S1./(D*ak));
end;
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A.2 Listati Matlab per I’equazione 2D

function
[ul,Nmedio,Nmediox,Nmedioy]=x1ing2D(x,y,t,d,h,S0,S1,taub,alph
a,Navg,Nd,Na,nmodi,R);

% Questo programma calcola 1l profilo n(x,y,t) o p(x,y,t)
secondo

% 11 modello di Ling e Ajmera.

% x > coordinata x [cm]

% y - coordinata y [cm]

% t : coordinata t [s]

% d - spessore del campione lungo x [cm]

% h - spessore del campione lungo y [cm]

% SO : SRV alla superficie dove comincia la generazione
[cm/s]

% S1 - SRV alla superficie opposta [cm/s]

% taub : valore del lifetime di bulk [s]

% alpha: coefficiente di assorbimento (funzione della
lunghezza d"onda del laser)

% Navg : densita media dei portatori in eccesso [cm™-3]

% Nd - donatori [cm™-3]

% Na - accettori [cm™-3]

% nmodi: numero di modi della serie da tenere in
considerazione

% R - coefficiente di riflessione della superfici

NO=(Navg*d*h*(1-R*exp(-alpha*d)))/((1-R)*(1-exp(-alpha*d)));
iT Nd>Na
[muOn,muOp,Dn,Dp,D]=mobi I i1ty2(Nd+NO,NO,Nd,Na) ;
else
[muOn,muOp,Dn,Dp,D]=mobi lity2(NO,NO+Na,Nd,Na) ;
end;
[XX,YY]=meshgrid(Xx,y);
XXX=meshgrid(XX,1)";
YYY=meshgrid(YY,1)";
u=zeros(length(x), length(y), length(t));
nx=zeros(length(XXX), length(t));
ny=zeros(length(YYY), length(t));
%condizione iniziale
a=exp(—alpha*(XXX+d/2))+R*exp(-alpha*d)*exp(-alpha*(-
XXX+d/2));
b=1-R"2*exp(-2*alpha*d);
nx(:,1)=((NO*(1-R)*alpha)/b).*a;
A=zeros(length(x), length(y));
A(:,ceil(length(y)/2))=1;
A=reshape(A*", length(xX)*length(y),1);
YYM=YYY.*A;
ny(:,1)=(length(y)/h) . *exp(-((YYY-YYM) .~2) ./1le-13);
%transitorio
for k=1:nmodi,
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modo=xmodol 1ng2D(XXX,t,d,S0,S1,taub,alpha,D,k-1,NO,R);
nx(:,2:end)=nx(:,2:end)+modo(:,2:end);
end;
ny(:,2:end)=(ones(size(YYY))*(1./2.*sqgrt(pi1.*D.*(t(2:end)-
t(1))))))-*(exp(-(YYY-YYM) ."2)*(1./(4.*D.*(t(2:end)-

t(1))))));

u=nx.*ny;
ul=reshape(u, length(y), length(x), length(t));
Nmedio=squeeze(trapz(x,trapz(y,ul(:,:,:)))./(d*h));

Nmedioy=squeeze(trapz(y,ul(:,:,:))-/h);
Nmediox=squeeze(trapz(x,ul(:,:,:),2)./d);

function modo=xmodoling2D(XX,t,d1,S0,S1,taub,alfa,D,k,NO,R);
% Questa funzione calcola i1l singolo modo delmodello di Ling
e Ajmera.

% XX : nodi della griglia x-y [cm]

% t - coordinata t [s]

% dil - spessore del campione lungo x [cm]

% SO : SRV alla superficie dove comincia la generazione
[cm/s]

% S1 - SRV alla superficie opposta [cm/s]

% taub : valore del lifetime di bulk [s]
% alfa: coefficiente di assorbimento

% D - diffusione [cm™2/s]

% k : singolo modo della serie

% NO - livello di iniezione dei portatori [cm™-2]
% R - coefficiente di riflessione della superfici

g0=NO*(1-R)*alfa/(1-R"2*exp(-2*alfta*dl));
ak=fzero("funcling2D",[3000],optimset(“disp*,"off"),S0,S1,d1,
D,K);

zk=ak*d1/2;
bk=-(D*ak*cos(zk)+S0*sin(zk))/(D*ak*sin(zk)-S0*cos(zk));
den=(bk"2*(ak*d1+sin(ak*dl))+(ak*dl-
sin(ak*dl)))*(ak"2+alfan2);

numl=(1+R*exp(-
alfa*dl))*bk*(cos(zk)*sinh(alfa*d1l/2)+ak/alfa*sin(zk)*cosh(al
fa*d1/2));
num2=(1-R*exp(-alfa*dl))*(ak/alfa*cos(zk)*sinh(alfa*d1/2)-
sin(zk)*cosh(alfa*d1/2));
Bk=4*ak*gO0*alfa*exp(-alfa*dl1/2)*(numl+num2)/den;
modo=Bk.*(bk.*cos(ak.*XX)+sin(ak.*XX))*exp(-
(1/taub+ak.”2.*D) . *(t-t(1)));

function e=funcling2Db(ak,S0,S1,d1,D,k);
% In questa fTunzione si trova l1%equazione trascendente di
Ling e Ajmera
% ak - zero della funzione
% dl1 : spessore del campione lungo x [cm]
% k - ordine del modo
it S0==S1,
e=ak*dl-k*pi-2*atan(S1l./(D*ak));
else e=ak*dl-k*pi-atan(S0./(D*ak))-atan(S1./(D*ak));end;
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Appendice B

Listati Matlab dei modelli utilizzati per

risolvere ’equazione della diffusione.

B.1 Listati Matlab

function [muOn,muOp,Dn,Dp,Damb]=mobility2(n,p,Nd,Na)
%Calcolo della mobilita secondo il modello di Philips
k=1.38e-23;

g=1.602e-19;

T=300;

MMNN_UM=5.22e1;

MMXN_UM=1.417e3;

NRFN_UM=9.68e16;

ALPN_UM=6_8e-1;

TETN_UM=2.285;

NRFD_UM=4e20;

CRFD_UM=2.1e-1;

MMNP_UM=4 _49e1;

MMXP_UM=4_705e2;

NRFP_UM=2.23el7;

ALPP_UM=7.19e-1;

TETP_UM=2_.247;

NRFA_UM=7.2e20;

CRFA_UM=5e-1;

m0=9.11e-31;%Massa elettrone espressa in Kg

me=m0; mh=1.258*m0;

Ndast=Nd*(1+1/(CRFD_UM+(NRFD_UM/Nd)"2));
Naast=Na*(1+1/(CRFA_UM+(NRFA_UM/Na)"2));
mu_latt_n=MMXN_UM*((T/300)"N(-TETN_UM));%mobilita elettroni
Nsc_n=Ndast+Naast+p;

a=2.459./(3.97e13.*Nsc_n.~(-2/3));
Pn=(((3.828./(1.36e20./(n+p))) -*(m0/me))+a) .- ~(-1)*(T/300)"2;
GPn=1-
(0.89233./(0.41372+Pn_*(((mO/me)*(T/300))"0.28227)) .~0.19778)
+(0.005978.7/(Pn.*(((me/m0)*(300/T))"0.72169)).711.80618) ;
FPNn=(0.7643.*Pn."0.6478+2.2999+6.5502*(me/mh)) ./(Pn."~0.6478+2
.3670-0.8552*(me/mh)) ;

Nsc_eff_n=Ndast+(Naast.*GPn)+p./FPn;

muN_n=(MMXN_UM"2/ (MMXN_UM-MMNN_UM))*(T/300)~(3*ALPN_UM-1_.5);
muc_n=C(MMXN_UM*MMNN_UM)/ (MMXN_UM-MMNN_UM))*(300/T)"0.5;
muD_A_p=(muN_n.*(Nsc_n./Nsc_eff _n)).*((NRFN_UM./Nsc_n) .~ALPN _
UM)+muc_n_.*((n+p)./Nsc_eff_n);

muln=mu_Rlatt n.~-1+muD A p."-1;

- 108 -



mu_latt_p=MMXP_UM*((T/300)~(-TETP_UM));%Mobilita lacune
Nsc_p=Ndast+Naast+n;

al=2.459./(3.97el1l3.*Nsc_p-~(-2/3));
Pp=(((3.828./(1.36e20./(n+p))) .*(m0/mh))+al) .~(-1)*(T/300)"2;
GPp=1-
(0.89233.7/(0.41372+Pp.*((MmO/mh)*(T/300))"0.28227) .~0.19778)+(
0.005978.7/(Pp-*(((mh/m0)*(300/T))"0.72169)) .~1.80618) ;
FPp=(0.7643.*Pp."0.6478+2.2999+6 .5502*(mh/me)) ./(Pn.~0.6478+2
-3670-0.8552*(mh/me)) ;

Nsc_eff_ p=Naast+Ndast.*GPp+n./FPp;

muN_p=(MMXP_UM"2/ (MMXP_UM-MMNP_UM))*(T/300)"(3*ALPP_UM-1_5);
muc_p=((MMXP_UM*MMNP_UM)/ (MMXP_UM-MMNP_UM))*(300/T)"0.5;
muD_A n=(muN_p.*(Nsc_p./Nsc_eff _p)).*((NRFP_UM./Nsc_p) -~ALPP_
UM)+muc_p-*((n+p)./Nsc_eff_p);

mulp=mu_Rlatt p.~-1+muD_A n."-1;

muOn=muln."-1;

muOp=mulp.~™-1;

Dn=(k*T./q) -*muOn;

Dp=(k*T./q) -*muOp;

Damb=(k*T./q) -*(n+p) ./(n./muOp+p./muln) ;

function Usrh=srh_time(n,p,taun0O,taup0,etrap,Nd,Na);
% Calcolo della U di SRH ed Auger

% p - lacune iniettate [cm-3]

% n - elettroni iniettati [cm-3]

% taunO - lifetime degli elettroni [s]

% taupO : lifetime delle lacune [s]

% etrap : distanza del centro di ricombinazione dal livello
di

% Fermi i1ntrinseco

nsrhn=1el7;

nsrhp=1el7;

augn=1e-31;

augp=le-31;

Cdirect=1le-15;

nie=1.45el0;

g=1.602e-19;

k=1.38e-23;

T=300;

ntot=Nd+Na;

taun=taunO./(1+ntot/nsrhn);
taup=taupO0./(1+ntot/nsrhp);

c=(p-*n-nien2);

a=taup.*(n+nie.*exp(g*etrap/(k*T7)));
b=taun.*(p+nie.*exp(-q*etrap/(k*T)));
Uauger=augn*(p.*n."2-n_.*nie."2)+augp*(n.*p."2-p.*nie."2);
Udir=Cdirect*(n.*p-nie."2);
Usrh=c./(a+b)+Uauger+Udir;
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Appendice C

Listati Matlab per la soluzione dell’equazione
della diffusione 1D/2D col metodo delle
differenze finite per livelli di iniezione

arbitrari

C.1 Listati Matlab per I’equazione 1D

function
[ul,Nmedio]=implicitol D(x,t,d,S0,S1,taun0,taup0,alpha,Navg,N
d,Na,R,metodo, livello);

% X : nodi della griglia

% t - vettore dei tempi [s]

% d - spessore del campione [cm]

% SO : velocita di ricombinazione superificale sulla 1
faccia [cm/s]

% S1 : velocita di ricombinazione superificale sulla 2
faccia [cm/s]

% taunO : tempo di vita medio di ricombinazione degli
elettroni [s]

% taupO0 : tempo di vita medio di ricombinazione delle lacune
[s]

% alpha : coefficiente di assorbimento alla lunghezza d"onda
della pompa [cm-1]

% Navg : densita media dei portatori in eccesso [cm-3]

% Nd - donatori [cm-3]

% Na : drogaggio accettori [cm-3]

% R : coefficiente di riflessione agli spigoli

% metodo :0/esplicito,1/purament implicito,0.5/Crank-

Nicolson,altro/semi-implicito

% livello:0/bassi livelli d"iniezione,1/alti livelll di
iniezione
NO=(Navg*d*(1-R*exp(-alpha*d)))/((1-R)*(1-exp(-alpha*d)));
etrap=0;

nie=1.45el0;

%Campione TYPE N

if Nd>Na
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[muOn,muOp,Dn,Dp,D]=mobi lity2(Nd+NO,NO,Nd,Na);
Nn1=Nd;pl=0;n2=Nd;p2=nie”™2/Nd;

else

%Campione TYPE P
[muOn,muOp,Dn,Dp,D]=mobi lity2(NO,NO+Na,Nd,Na) ;
nl1=0;pl=Na;n2=nie”™2/Na;p2=Na;

end;

dx=x(2)-x(1);

x=[x(1)-dx,x,x(end)+dx];

Nx=length(x);

Nt=length(t);

ul=zeros(Nx,Nt);

a=exp(-alpha*(x+d/2))+R*exp(-alpha*d)*exp(-alpha*(-x+d/2));

b=1-R"2*exp(-2*alpha*d);

cond_ini=((NO*(1-R)*alpha)/b)*a;

ul(:,1)=cond_ini~"; %condizione iniziale

lambda=metodo; %Parametro che definisce 1l metodo implicito

for j=1:length(t)-1,
U=srh_time(ul(:,j)+nl,ul(:,j)+pl,taun0O,taup0,etrap,Nd,Na);

[muOn,muOp,Dn,Dp,D]=mobility2(ul(:,j)+n2,p2+ul(:,j),Nd,Na);
Grad_D=Gradient(D,x);
de=t(g+1)-t(J);
Cx=dt.*D./(dx."2);
Bx=livello*dt*Grad _D/2*dx;
% creazione delle due matrici tridiagonali a blocchi
Jdiag=diag(1+2*Cx(1:Nx) .*lambda,0);
JIx=diag(-(Cx(1:Nx-1)-Bx(1:Nx-1)).*lambda,-1);
Jhx=di1ag(-(Cx(2:Nx)+Bx(2:Nx)) -*lambda,1);
Rdiag=diag(1-2*Cx(1:Nx).*(1-1ambda),0);
RIx=diag((Cx(1:Nx-1)-Bx(1:Nx-1)).*(1-1ambda),-1);
Rhx=diag((Cx(2:Nx)+Bx(2:Nx)).*(1-lambda),1);
%matrice che moltiplica U(1,j+1)
J=JIx+Jdiag+Jhx;
% matrice che moltiplica U(1,])
R=RIx+Rdiag+Rhx;
Res=R*ul(:,j)-U*dt;
%Condizioni al contorno tipo Neumann
J(1,:)=[(-D(2)/(2*dx)),-S0,(D(2)/(2*dx)) ,zeros(1,Nx-3)];
J(Nx, :)=[zeros(1,Nx-3), (-D(Nx-1)/(2*dx)),S1, (D(Nx-
1)/7(2*dx))1;
Res(1)=0;
Res(Nx)=0;
%Calcolo della matrice delle concentrazioni per j+1
ul(:,j+1)=J\Res;
end;
ul=ul(2:end-1,:);
Nmedio=1/d*trapz(x(2:end-1),ul);
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C.2 Listati Matlab per I’equazione 2D

function
[B,Nmedio,Nmediox,Nmedioy]=implicito2D(x,y,t,d,h,S0,S1,taun0,
taupO, alpha Navg,Nd,Na,R,metodo, livello);

% X : nodi della griglia lungo x

% y : nodo della griglia lungo y

% t - vettore deir tempi [s]

% d : spessore del campione lungo x[cm]

% h - spessore del campione lungo y[cm]

% SO : velocita di ricombinazione superificale sulla 1
faccia [cm/s]

% S1 : velocita di ricombinazione superificale sulla 2
faccia [cm/s]

% taunO : tempo di vita medio di ricombinazione degli
elettroni [s]

% taupO : tempo di vita medio di ricombinazione delle lacune
[s]

% alpha : coefficiente di assorbimento alla lunghezza d"onda
del laser [cm-1]

% Navg : densita media dei portatori in eccesso [cm-3]

% Nd - drogaggio di donatori [cm-3]

% Na - drogaggio di accettori [cm-3]

% R -coefficiente di riflessione delle superfici

% metodo :0/esplicito,l/purament implicito,0.5/Crank-

Nicolson,altro/semi-implicito

% Bivello:0/bassi livellil d"iniezione,1/alti livelli1 di

iniezione

NO=(Navg*d*h*(1-R*exp(-alpha*d)))/((1-R)*(1-exp(-alpha*d)));

etrap=0;

nie=1.45el10;

iT Nd>Na
%Campione TYPE N
[muOn,muOp,Dn,Dp,D]=mobi I 1ty2(Nd+NO,NO,Nd,Na) ;
Nn1=Nd;pl=0;n2=Nd;p2=ni1e”™2/Nd;

else
%Campione TYPE P
[muOn,muOp,Dn,Dp,D]=mobi 1 1ty2(NO,NO+Na,Nd,Na) ;
nl1=0;pl=Na;n2=nie”™2/Na;p2=Na;

end;

dx=x(2)-x(1);

dy=y(2)-y(1);

Nx=length(x)+2;

Ny=length(y);

M=length(t);

P=Nx*Ny;

ul=zeros(P,M);

ula=zeros(Nx,Ny);

[XX,YY]=meshgrid(Xx,y);

YYM=zeros(size(YY));
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YYM(Fix(Ny/2)+1, )=YY(Fix(Ny/2)+1,:);

a=exp(-alpha*(XX+d/2))+R*exp(-alpha*d)*exp(-alpha*(-XX+d/2));

b=1-R"2*exp(-2*alpha*d);

cond_ini=((NO*(1-R)*alpha)/b) .*a;

cond_ini=cond_ini.*(length(y)/h) . *exp(-((YY-YYM) ."2)./1le-13);

ula(2:Nx-1,1:Ny)=cond_ini"~;

ula(l,:)=ula(2,:);

ula(Nx, :)=ula(Nx-1,:);

ul(:,1l)=reshape(ula,P,1l);%condizione iniziale

clear ula;

clear YYM;

lambda=metodo;%Parametro che definisce il metodo implicito

for j=1:M-1,
U=srh_time(ul(:,j)+nl,ul(:,j)+pl,taun0O,taup0,etrap,Nd,Na);

[muOn,muOp,Dn,Dp,D]=mobility2(ul(:,j)+n2,p2+ul(:,j),Nd,Na);
GD=D;
GD=reshape(GD,Nx,Ny);
[GDx,GDy]=gradient(GD);
Gradx_D=reshape(GDx,P,1);
Grady_D=reshape(GDy,P,1);
dt=t(+1)-tQ);
Cx=dt*D./dx."2;
Cy=dt*D./dy."2;
Bx=(dt*Gradx_D./2_.*dx).*livello;
By=(dt*Grady _D./2.*dy).*livello;
% creazione delle due matrici tridiagonali a blocchi
Jdiag=diag(1+2*Cx(1:P) .-*lambda+2*Cy(1:P) .*lambda,0);
JIx=diag(-(Cx(1:P-1)-Bx(1:P-1)).*lambda,-1);
Jhx=diag(-(Cx(2:P)+Bx(2:P)).*lambda,1);
Jhy=diag(-(Cy(2:P-2)+By(2:P-2)).*lambda,3);
Jly=diag(-(Cy(1:P-3)-By(1:P-3)).*lambda,-3);
Rdiag=diag(1-2*Cx(1:P).*(1-1lambda)-2*Cy(1:P) .*(1-
lambda),0);
RIx=diag((Cx(1:P-1)-Bx(1:P-1)).*(1-lambda),-1);
Rhx=diag((Cx(2:P)+Bx(2:P)).*(1-1ambda),1);
Rhy=diag((Cy(2:P-2)+By(2:P-2)).*(1-1ambda),3);
Rly=diag((Cy(1:P-3)-By(1:P-3)).*(1-lambda),-3);
%matrice che moltiplica U(1,j+1)
J=JIx+Jly+Jdiag+Jhx+Jhy;
% matrice che moltiplica U(i,jJ)
R=RIx+Rly+Rdiag+Rhx+Rhy;
Res=R*ul(:,j)-U*dt;
%Condizioni al contorno tipo Neumann
for 1=1:Nx:(Nx*(Ny-1))+1,
J(1,:)=[zeros(1,i-1),(-D(i)./(2.*dx)), -
SO, (D(1)./(2-*dx)),zeros(1,P-(1+2))];
end;
for §1=Nx:Nx:Nx*Ny,
J(1,:)=[zeros(1,1-3), (-
D(1)./7/(2.*dx)),S1,(D(1)-/(2.*dx)),zeros(1,P-1)];
end;
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for 1=1:Nx:(Nx*(Ny-1))+1,
Res(i1)=0;
end;
for E1=Nx:Nx:Nx*Ny,
Res(i1)=0;
end;
%Callcolo della matrice delle concentrazioni per j+1
ul(:,jJj+1)=I\Res;
end;
for j=1:M,
A(:,1,3)=reshape(ul(:,J),Nx,Ny);
B(:,:,1)=A(2:Nx-1,1:Ny,}J);

end;
Nmedio=squeeze(trapz(y,trapz(x,B(:,:,:)))-/(d*h));
Nmedioy=squeeze(trapz(y,B(:,:,:),2)./h);

Nmediox=squeeze(trapz(x,B(:, :,:))./d);
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