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Introduzione  
 

Nel corso degli anni sono state sviluppate molteplici tecniche per misurare i 

parametri ricombinativi all’interno di un campione di silicio data l’importanza 

che questi rivestono nel migliorare le prestazioni di dispositivi elettronici quali 

ad esempio le celle solari, le RAM dinamiche, i sensori ottici [1]. Questo 

lavoro si inserisce proprio in questo filone, cercando di proporre una soluzione 

al problema della misura dei suddetti parametri, in regime di iniezione 

arbitrario. All’interno di questa dissertazione sono stati sviluppati strumenti 

software, in ambiente MatLab, in grado di simulare il processo di 

ricombinazione attraverso la soluzione numerica dell’equazione della 

diffusione con il metodo delle differenze finite sia nel caso monodimensionale 

che in quello bidimensionale. Una volta sviluppato tale simulatore, attraverso 

delle procedure di fitting, è possibile estrarre i parametri di interesse. Per 

considerare l’evolvere del processo, si è fatto uso di modelli aggiornati, per la 

velocità di ricombinazione e per la mobilità, dipendenti sia dal tempo che 

dalle coordinate spaziali. Tali modelli sono gli stessi utilizzati dal simulatore 

MEDICI. Per testare la validità del simulatore elaborato sia nel caso 

monodimesionale che in quello bidimensionale, si è usato il modello analitico 

proposto da Luke e Cheng di decadimento dei portatori minoritari iniettati 

attraverso l’utilizzo di un laser, ed esteso in seguito da Ling ed Ajmera al caso 

di velocità di ricombinazione superficiale diversa per le due superfici del 

wafer. Tale modello è senza dubbio valido per bassi livelli di iniezione, ma 

costituisce solo il punto di partenza della nostra analisi, dato che l’obbiettivo 

finale è quello dell’estrazione dei parametri ricombinativi a livelli di iniezione 

qualsiasi, e cioè proprio nelle condizioni in cui dispositivi quali ad esempio le 

celle solari sono chiamate a lavorare. Per questo motivo per testarne la validità 

ad alti livelli di iniezione, il simulatore numerico realizzato è stato confrontato 

anche con un simulatore commerciale di grande successo quale MEDICI, che 
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tuttavia essendo un simulatore “general purpose” non permette un’estrazione 

dei parametri semplice e veloce, per cui si sentiva l’esigenza di uno strumento 

più snello per l’estrapolazione dei parametri suddetti. I risultati raggiunti in 

questo lavoro, mostrano un buon accordo tra i diversi modelli sia per quanto 

riguarda i bassi livelli di iniezione che per gli alti livelli di iniezione. 

In un materiale semiconduttore i parametri più importanti per la sua 

caratterizzazione sono, per quanto riguarda i  bassi livelli di iniezione, il 

tempo di vita medio di ricombinazione nel bulk (τB) e la velocità di 

ricombinazione superficiale  (in questa tesi sarà chiamata S o SRV). Più in 

generale e cioè a livelli di iniezione qualunque non  potendo considerare più 

τB come una costante, è necessario risolvere l’equazione della diffusione 

numericamente, ed estrarre i parametri ricombinativi di interesse, quali il 

tempo di vita medio dei portatori minoritari (τMIN), dei portatori maggioritari 

(τMAG) ed i parametri Auger. Tali parametri dipendono da una moltitudine di 

fattori quali: la tecnica di produzione del semiconduttore, il suo drogaggio, lo 

stato della sua superficie e la densità di portatori liberi iniettati. Nel recente 

passato sono stati fatti molti sforzi per sviluppare tecniche per la misurazione 

di questi parametri, tra tutte queste tecniche è stata data grande importanza a 

quelle tecniche che non richiedono nessun contatto con il campione di silicio. 

Tali tecniche, sviluppate prevalentemente per bassi livelli di iniezione, 

possono essere divise in due classi principali. La prima classe [2,3,4,5,6] si 

basa sulla determinazione dell’evoluzione di un eccesso di portatori iniettati 

nel campione attraverso tecniche laser. Tali metodi sono interessanti perché 

danno un’idea diretta della velocità di ricombinazione del processo. La 

seconda classe [7], si basa sulla risposta in frequenza di un semiconduttore 

quando è eccitato con un impulso laser modulabile. Le così dette tecniche 

armoniche richiedono un apparato sperimentale molto semplice, ma il risultato 

finale si ottiene solo dopo una complessa analisi numerica. In entrambi i casi 

il processo di ricombinazione può essere analizzato o attraverso un impulso 
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laser, con energia minore della banda proibita del semiconduttore o mediante 

delle radiazioni a microonde, il meccanismo fisico che produce la 

modulazione del raggio sonda è lo scattering dei portatori liberi, legato alla 

variazione della costante dielettrica del materiale dovuta a sua volta 

all’iniezione dei portatori liberi. I principali problemi legati a queste tecniche 

sono la conoscenza del livello di iniezione e la separazione tra il contributo 

della superficie e quello del volume nel processo di ricombinazione totale. In 

tutti i lavori fino ad ora eseguiti, tali tecniche non permettono una valutazione 

esatta della densità di portatori liberi iniettati nel campione. In genere la 

conoscenza del livello di iniezione è affidata alla conoscenza delle 

caratteristiche dell’impulso laser. Tuttavia a causa del fatto che i parametri 

geometrici che caratterizzano l’impulso laser sono noti con grande incertezza, 

tali misure possono essere affette da un errore dell’ordine del 70% per quanto 

riguarda il livello di iniezione. Questo non è molto grave quando si lavora a 

bassi livelli di iniezione, ma è un grande problema quando si vuole 

caratterizzare il valore del tempo di vita medio in regime di iniezione 

arbitrario. Un altro problema che si incontra in questo tipo di misure è la 

separazione tra il contributo della superficie ed il contributo del volume. La 

separazione tra questi due contributi si può ottenere con la così detta tecnica 

della doppia pendenza[3,4,5,8]. Questa tecnica è basata sull’identificazione 

del cambio di pendenza nella curva di decadimento dei portatori in eccesso. 

Infatti per un dato campione di silicio, la curva di decadimento esibisce 

un’evidente differenza tra la pendenza iniziale immediatamente dopo 

l’impulso laser e la pendenza asintotica verso la fine del processo di 

decadimento, quando la SRV diventa abbastanza alta. Sfortunatamente 

l’identificazione corretta di entrambe le pendenze risulta molto difficile per 

via dell’inevitabile errore di misura e per la non perfetta linearità del sistema 

di misura. Inoltre questa tecnica non permette di sfruttare i vantaggi delle 

informazioni contenute nell’intera curva di decadimento. Oggi il più comune 
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metodo per la determinazione del tempo di vita medio dei portatori in un 

wafer di silicio cristallino è la tecnica PCD (contactless photoconductance 

decay)[7] , dove il decadimento dei portatori iniettati mediante un impulso 

laser è misurato mediante le microonde. Tuttavia visto il fatto che la 

ricombinazione non avviene solo nel volume del wafer di semiconduttore ma 

anche sulla sua superficie, come detto sopra, la costante di tempo che si 

ottiene facendo il fitting del decadimento  asintotico e monoesponenziale 

dell’eccesso di portatori, non è il tempo di vita medio di ricombinazione dei 

portatori nel volume τB ma un tempo di vita medio effettivo τeff . La misura di 

τeff è uguale a τB solo per wafer di spessore infinito (ovvero per campioni il cui 

spessore è molto maggiore della lunghezza di diffusione dei portatori) o per 

wafer la cui superficie è stata perfettamente passivata (in modo da annullare la 

velocità di ricombinazione superficiale). Considerato il fatto che la lunghezza 

dei wafer di silicio normalmente in commercio è  400 µm, la prima condizione 

è di solito violata è non rimane altro da fare che tentare di minimizzare la 

velocità di ricombinazione superficiale (SRV)  al fine di misurare la vita 

media dei portatori nel volume. Tuttavia la condizione di annullamento 

completo della velocità di ricombinazione superficiale non può mai essere 

praticamente raggiunta, e per questo motivo, sperimentalmente si ha sempre 

che τeff <τB .Dal punto di vista pratico, il miglior modo di misurare τB da una 

singola misura a microonde PCD è analizzare la parte asintotica della curva di 

decadimento  e ridurre il più possibile SRV. Nel passato sono stati compiuti 

enormi sforzi al fine di sviluppare tecniche di passivazione della superficie, 

per realizzare un’effettiva misura del tempo di vita medio dei portatori 

minoritari nel volume di un wafer di silicio. Le sei condizioni generali 

richieste per una tecnica di passivazione sono: 

1. Una SRV molto bassa e bassi livelli di iniezione 

2. Stabilità temporale 

3. Omogeneità spaziale 

 - 8 -



4. Facilità di applicazione 

5. Riproducibilità 

6. Processi eseguiti a basse temperature in genere sotto i 400°C in       

quanto per alte temperature si può degradare il tempo di vita medio 

nel  volume. 

Si riportano di seguito i più importanti schemi di passivazione usati 

nell’ultimo decennio per la determinazione del tempo di vita medio nel 

volume di un wafer di silicio. Lo schema che maggiormente è stato usato per 

la passivazione di un wafer di silicio che non tiene conto della resistività del 

wafer stesso, o del tipo di drogaggio e del livello di iniezione è una 

passivazione chimica della superficie con acido fluoridrico (HF) [6]. Durante 

una misura PCD il wafer è immerso in una soluzione concentrata o diluita di 

HF. La grande riduzione di SRV che un trattamento di HF riesce ad ottenere è 

attribuita alla drastica riduzione della densità di stati superficiale. Nonostante 

che con questa tecnica si raggiungono buoni risultati, ci sono due grandi 

problemi, il primo è che la qualità della passivazione è fortemente dipendente 

dal tempo violando il requisito 2, il secondo è che l’HF  è tossico ed i suoi 

vapori possono corrodere gli apparati di misura violando il requisito 4. 

Durante gli ultimi anni, per via dei problemi legati all’uso dell’HF, tale 

tecnica è stata soppiantata in molti laboratori da un metodo di passivazione 

chimica che usa una soluzione alcolica di iodio, che per prima è stata usata da 

Horanyi [9]. Nonostante oggi tale tecnica sia una delle più usate, per la 

passivazione della superficie di un wafer, anche essa presenta diversi 

problemi, il più importante dei quali è che la qualità della passivazione 

degrada con il tempo, violando il requisito 2, inoltre la riproducibilità degli 

esperimenti risulta alquanto scarsa. Una versione modificata della 

passivazione con iodio è stata proposta da Arndt [10] che ha usato una sorta di 

vernice di alcool e iodio. Questa tecnica ha il grande vantaggio  che il wafer 

sotto test non deve essere immerso in un liquido durante la misura. Tuttavia la 
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qualità della passivazione non è molto stabile nel tempo. Schöfthaler [11] ha 

usato un approccio completamente differente per la passivazione della 

superficie, usando delle cariche elettriche depositate su entrambe le superfici 

del wafer. Tale tecnica ha tuttavia il limite di non essere persistente nel tempo, 

e se si considera che per eseguire una misura PCD su un wafer di silicio con 

un’area estesa possono essere necessarie anche 10 ore e più, si capisce che 

questo non è un problema da poco. Inoltre la carica non era distribuita 

uniformemente per cui tale tecnica violava la regola 3, ed infine per eseguire 

le misure era necessaria una elevata temperatura, violando la regola 6. Un 

altro metodo per la passivazione della superficie è stato proposto da Katayama 

[12] , che ha osservato un forte incremento del tempo di vita medio effettivo 

dei portatori in un wafer di silicio coperto con uno strato di ossido nativo 

durante un’illuminazione ultravioletta (UV). L’effetto di passivazione è 

dovuto al riempimento degli stati energetici all’interno dell’ossido nativo. 

Tale passivazione è altamente instabile e soggetta a rapida degradazione dopo 

pochi minuti dall’esposizione. Questo appena proposto non è che un piccolo 

sottoinsieme di un insieme molto vasto e variegato di esperimenti e teorie 

sviluppate per risolvere lo stesso problema, e cioè la determinazione dei 

parametri ricombinativi a bassi livelli di iniezione. Per quanto riguarda i livelli 

di iniezione arbitrari, è necessario operare in maniera diversa, in quanto come 

detto in precedenza non ha più senso parlare di τB come di una costante da 

misurare, ma è necessario estrarre tutti i parametri da cui dipende il processo 

di ricombinazione, e cioè τMIN, τMAG, S ed i parametri Auger. La vastità e 

trasversalità degli studi effettuati sull’argomento testimonia l’attenzione che la 

comunità scientifica dà alla soluzione di questo problema che è la 

determinazione ed il controllo dei parametri che caratterizzano il processo di 

ricombinazione in regime di iniezione arbitrario.  
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Sommario della tesi 

Il capitolo 1 tratta il processo di ricombinazione nella sua generalità, 

proponendo i modelli che storicamente sono tra i più usati e consolidati. Il 

capitolo 2 considera da un punto di vista teorico l’interazione di un wafer di 

silicio con un impulso laser, mostrando il già citato modello di Luke e Cheng 

sia nel caso monodimensionale che in quello bidimensionale ed inoltre  

illustra i limiti di validità di detto modello. Nel capitolo 3 viene sviluppata 

una possibile metodologia per ricavare la soluzione numerica dell’equazione 

della diffusione attraverso il metodo delle differenze finite sia nel caso 1D che 

in quello 2D, ottenendo una soluzione veloce e facilmente implementabile. Il 

capitolo 4 riporta una serie di simulazioni eseguite sia a bassi livelli di 

iniezione, per testare la validità del simulatore realizzato rispetto ad un 

modello sicuro ed affidabile come quello analitico, sia ad alti livelli di 

iniezione, dove questa volta il simulatore d’elezione è MEDICI. Per 

concludere sono riportate tre appendici: la prima in cui si risolve in ambiente 

MatLab l’equazione del modello analitico di Luke e Cheng; la seconda in cui 

sono riportati i listati dei modelli utilizzati per valutare la diffusione, la 

mobilità e la velocità di ricombinazione netta; la terza in cui si risolve sempre 

in ambiente MatLab, l’equazione della diffusione con il metodo delle 

differenze finite.     
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Capitolo 1 

Il processo di ricombinazione nel volume e in 

superficie. 

 

1.1 Introduzione 
Le proprietà di un materiale semiconduttore sono determinate e dalla struttura 

cristallina (proprietà intrinseche) e dalle imperfezioni e impurità del suo 

reticolo cristallino (proprietà estrinseche). Le proprietà intrinseche non 

possono essere controllate; quelle estrinseche invece si possono manipolare 

attraverso l’introduzione di impurità e difetti che interagiscono con i portatori 

di carica liberi (elettroni e lacune) caratterizzando, così, le prestazioni dei 

dispositivi elettronici. Le impurità e le imperfezioni presenti nel reticolo 

cristallino, creano dei livelli nella banda proibita del semiconduttore, questi 

livelli possono situarsi a ridosso della banda di conduzione o di valenza 

oppure  a distanze intermedie, più vicino al centro della banda proibita; nel 

primo caso parliamo di livelli superficiali e nel secondo caso di livelli 

profondi. I livelli superficiali, a temperatura ambiente, sono completamente 

ionizzati, cioè o totalmente liberi o totalmente occupati, per cui non sono 

capaci di interagire con i portatori liberi; vengono di solito introdotti 

intenzionalmente, drogando il semiconduttore con atomi donatori ed accettori, 

allo scopo di controllare la conducibilità ed il tipo di portatori di maggioranza. 

I livelli profondi d’altra parte sono solo parzialmente ionizzati per cui essi 

danno scarso contributo alla conducibilità totale ma sono capaci di catturare i 

portatori liberi dando vita ad un processo che di volta in volta può essere di 

ricombinazione, di generazione o di intrappolamento. Un’alta concentrazione 

di livelli profondi ha come conseguenza un aumento della velocità di 

ricombinazione-generazione nel semiconduttore, influenzando 

significativamente le sue prestazioni ed il suo utilizzo per una determinata  
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Fig 1.1 

applicazione. Una bassa velocità incrementa l’efficienza di celle solari e 

sensori, riduce il refresh time nelle RAM e diminuisce il rumore e le correnti 

di dispersione nei diodi; nei dispositivi di potenza, invece un’elevata velocità 

è richiesta per migliorarne il comportamento di switching.  

 

1.2 Meccanismi di ricombinazione nel volume 
L’interazione tra i livelli profondi e i portatori di carica liberi nel volume può 

essere studiata attraverso modelli termodinamici e in particolare attraverso il 

modello di Shockley-Read-Hall (SRH). Quando un materiale semiconduttore 

assorbe energia, ad esempio per irraggiamento, e se l’energia fornita è tale da 

provocare la generazione di coppie elettroni-lacune, il semiconduttore stesso 

si trova in una configurazione energetica instabile e quindi cercherà di 

riportarsi ad un livello di energia minima, attraverso un processo inverso alla 

generazione, chiamato ricombinazione, che libererà l’energia in eccesso  sotto 

diverse forme: per trasferimento ad un fotone (ricombinazione diretta), per 

trasferimento, sotto forma di energia cinetica, ad un altro portatore 

(ricombinazione Auger) oppure per trasferimento al reticolo sotto forma di 

fonone (ricombinazione indiretta). Vedi Fig 1.1. 

1.2.1 Ricombinazione diretta 

Il processo di ricombinazione diretta avviene prevalentemente in 

semiconduttori a banda proibita diretta, quali l’arseniuro di gallio (GaAs). In 
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questo processo un elettrone può ricombinarsi con una lacuna conservando il 

suo momento. Questo processo gioca un ruolo minore nei semiconduttori a 

banda proibita indiretta, quali il silicio, per cui non sarà approfondito in questa 

trattazione. Tuttavia, evidenze sperimentali mostrano che tale processo può 

essere descritto con la seguente relazione: 

(1.1)  2( )dir dir iU C np n= −

dove  è la velocità di ricombinazione diretta, n e p sono rispettivamente le 

concentrazioni libere di elettroni e lacune ed  è la concentrazione intrinseca 

del semiconduttore. La costante  può essere determinata in base a 

considerazioni di meccanica quantistica e risulta direttamente proporzionale 

alla velocità di ricombinazione ottica all’equilibrio: (~  per il 

silicio a 300 °K) 

dirU

in

dirC

6 310rG cm− −= 1s

(1.2) 
2 2

2
0

8

1
r h

kT

n KG d
c e

ν
π ν ν

∞

=
−

∫  

dove n è l’indice di rifrazione, h è la costante di Planck, k è la costante di 

Boltzmann, T è la temperatura assoluta e K è una costante che descrive 

l’interazione tra un fotone che genera una coppia elettrone-lacuna ed un 

solido.  Senza entrare in ulteriori dettagli, ricordiamo che il tempo di vita 

medio per la ricombinazione diretta è inversamente proporzionale al 

drogaggio del campione, così come indicato dalle seguenti equazioni: 

(1.3) 

2

2

,      type-n

,      type-p

i
d

r d

i
d

r a

n
G N

n
G N

τ

τ

=

=
 

dove  ed  sono le concentrazioni di donatori ed accettori. dN aN

1.2.2 Ricombinazione Auger 

Il processo di ricombinazione Auger coinvolge o due elettroni e una lacuna 

oppure due lacune ed un elettrone. In questo processo l’energia ed il momento 
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perso, ad esempio, dall’elettrone che si ricombina con la lacuna viene 

trasferito al secondo elettrone. 

Se definiamo con  la velocità totale di ricombinazione Auger abbiamo: aU

(1.4)  2 2 2 2
0 0( ) (a n i p iU C n p n n C p n n p= − + − )

−

dove  e  sono i coefficienti di Auger rispettivamente per i processi 

elettrone-elettrone-lacuna e lacuna-lacune-elettrone(~1–3  nel 

silicio). Senza entrare in ulteriori dettagli, riferendoci ai ref. [23-24] per una 

completa descrizione di questo processo, ricordiamo che il tempo di vita 

medio di Auger è dato da: 

nC pC

31 6 110 cm s−

(1.5) 2 2 2 2
0 0

1
( 2 ) ( 2a

n i pC n n C p n
τ =

+ + + )i

 

che può essere semplificato: 

(1.6) 
2

2

1n-type

1p-type

a
n d

a
p a

C N

C N

τ

τ

→ =

→ =
 

Tale espressione è congruente con il fatto che il processo di ricombinazione 

Auger è quello dominante nei semiconduttori con drogaggio elevato. Il 

processo di ricombinazione di Auger nel caso del silicio pone un limite 

superiore al valore del tempo di vita medio dei portatori. Questo limite è 

chiamato “limite Auger” per la ricombinazione nel silicio. 

1.2.3 Ricombinazione indiretta 

In semiconduttori a banda proibita indiretta quali il silicio questo è il più 

importante processo di ricombinazione. Quando gli elettroni presenti in banda 

di conduzione nel minimo di energia e le lacune presenti in banda di valenza 

nel  massimo di energia hanno un momento diverso è poco probabile che essi 

si ricombinino con una transizione diretta; tuttavia i livelli profondi in banda 

proibita possono catturare i portatori liberi ed assorbire la differenza di 

momento, permettendo così la transizione (ricombinazione). Qualche volta 

può anche succedere che la velocità di cattura delle lacune sia trascurabile 
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rispetto a quella degli elettroni; in questo caso poichè non ci sono abbastanza 

lacune per la ricombinazione, gli elettroni sono reimmessi in banda di 

conduzione (intrappolamento). Stessa cosa può accadere per le lacune. 

Shockley, Read ed Hall, nel 1952, descrissero il processo di cattura ed 

emissione dei portatori liberi da parte dei livelli profondi presenti in banda 

proibita; questo modello assume che la concentrazione di lacune ed elettroni 

in eccesso rimanga uguale durante l’intero processo di ricombinazione 

e che la ricombinazione sia delle lacune che degli elettroni 

avvenga con la stessa velocità. Nel prossimo paragrafo approfondiremo la 

teoria alla base del processo di ricombinazione indiretta data la notevole 

importanza che questo processo assume nel silicio semiconduttore che 

maggiormente viene usato nella moderna industria elettronica. 

( ( ) ( ))n t p t∆ = ∆

 

 

1.3 La teoria del processo di ricombinazione indiretta 
1.3.1 La cattura ed emissione dei portatori liberi 

Considereremo il fenomeno della cattura ed emissione da parte di un livello 

profondo discreto e monovalente con energia  e concentrazione . La 

probabilità che questo livello all’equilibrio sia occupato è data dalla funzione 

di distribuzione di Fermi-Dirac: 

tE tN

(1.7) ( ) 1

1
t fe t E E
kT

f E
e

−=
+

 

dove fE  è il livello di Fermi. La (1.4) può essere riscritta come: 

(1.8) ( ) 0 0

0 0
e t

t t

n pf E
n n p p

= =
+ +

 

dove  e tn tp  sono le concentrazioni di elettroni e lacune quando il livello di 

Fermi e quello profondo coincidono; e sono date da: 
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(1.9) 
t i

i t

E E
kT

t i

E E
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−

−

=
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dove  è il livello di Fermi intrinseco. iE

In condizioni di non equilibrio la funzione di distribuzione di Fermi-Dirac  si 

modifica; infatti portando in conto la legge della neutralità della carica 

elettrica, abbiamo: 

(1.10) ( ) 0 0

0 0
e t

t t t t

n p n p pf E
n n N p p N

∆ − ∆ ∆ − ∆
= + = +

+ +
n  

Il processo di cattura di un elettrone (lacuna) è basato su due importanti 

condizioni: primo devono essere disponibili dei livelli profondi per la cattura, 

e secondo deve essere possibile trasferire un elettrone (lacuna) a questi livelli. 

L’assenza di una di queste due condizioni rende impossibile il processo, per 

cui la velocità di cattura è data dalla seguente espressione, per gli elettroni: 

(1.11)  ( ) ( ) ( ) ( )
c

n t h t n eE
r N f E c E f E g E dE

∞
= ∫

dove  è la probabilità che un elettrone dalla banda di conduzione con 

energia E sia catturato da un livello profondo vuoto in un tempo unitario, g(E) 

è la densità degli stati in banda di conduzione e 

nc

( )h tf E  è la probabilità che il 

livello con energia uguale ad  sia occupato da una lacuna. tE

Con l’introduzione del coefficiente di cattura media: 

(1.12) 
( ) ( ) ( )

( ) ( ) ( )
c

c

n eE
n

eE

c E f E g E dE
c

f E g E d E

∞

∞〈 〉 =
∫
∫

 

possiamo riscrivere la velocità di cattura come: 

(1.13)  ( )n n t hr n c N f E= 〈 〉 t

dove il coefficiente di cattura può anche essere espresso in termini della 

sezione di cattura nσ  e della velocità termica  di un elettrone: nv

(1.14) n nc vnσ〈 〉 =  

Allora possiamo introdurre il tempo di vita medio degli elettroni 0nτ : 
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(1.15) 0
1

n
t n nN v

τ
σ

=  

e quindi riscrivere la velocità di cattura degli elettroni come: 

(1.16) 
0

( )h t
n

n

nf Er
τ

=  

Per le lacune vale lo stesso, e otteniamo: 

(1.17) 
0

( )e t
p

p

pf Er
τ

=  

(1.18) 0
1

p
t p pN v

τ
σ

=  

La velocità di emissione dipende dal numero di livelli profondi occupati e 

dalla probabilità di emissione: 

(1.19)  
( )
( )

n t e t

p t h t

g N f E e
g N f E e

=
=

n

p

p

dove  e  sono la probabilità di emissione rispettivamente per gli elettroni e 

per le lacune. In accordo al principio dell’equilibrio dettagliato, all’equilibrio, 

il processo di cattura ed emissione degli elettroni e delle lacune si deve 

bilanciare non solo globalmente ma anche localmente, per cui  e 

 e quindi : 

ne pe

eq eqn nr g=

eq eqpr g=

(1.20) 
0

( )t h t
p

p

p f Eg
τ

=  

(1.21) 
0

( )t h t
n

n

n f Eg
τ

=  

Quando non stiamo più in condizioni di equilibrio, i processi di cattura ed 

emissione non sono più bilanciati. La differenza n nU r gn= −  e  può 

essere definita come la velocità di ricombinazione rispettivamente per gli 

elettroni e per le lacune. Una differenza negativa è definita generazione.  

p pU r g= − p

Il processo di decadimento dell’eccesso di portatori può essere descritto da: 
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(1.22) 
n

p

n U g
t
p U g
t

∂∆
= − +

∂
∂∆

= − +
∂

 

dove g è la funzione di generazione. Le (1.22) possono essere usate per 

determinare le soluzioni a regime, il transitorio e il tempo di vita per gli 

elettroni e lacune per una qualsiasi funzione di generazione e per una qualsiasi 

concentrazione di livelli profondi. 

1.3.2 Il modello SRH 

A questo punto possiamo introdurre il modello SRH che per basse 

concentrazioni di livelli profondi si verifica quando i portatori minoritari sono 

catturati da quei livelli che in precedenza erano occupati dai portatori 

maggioritari. In questo caso l’eccesso di elettroni e lacune diminuisce con la 

stessa velocità ed il numero di elettroni e lacune in eccesso rimarrà invariato 

durante l’intero processo . Così è sufficiente scrivere una sola 

equazione per uno solo dei tipi di portatori liberi: 

( ( ) ( ))n t p t∆ = ∆

(1.23) 
2

0 0( ) (
i

SRH
p t n

np nU
n n p pτ τ

−
=

+ + + )t

 

che in termini di concentrazione in eccesso diventa: 

(1.24) ( ) 2
0 0

0 0 0 0 0 0( ) ( ) ( )SRH
n t p t n p

n p n n
U

p p n n nτ τ τ τ
+ ∆ + ∆

=
+ + + + + ∆

 

e il tempo di vita medio può essere determinato da: 

(1.25) SRH
SRH

n
U

τ ∆
=  

La velocità di ricombinazione ed il tempo di vita medio possono essere 

determinate risolvendo numericamente queste equazioni. La soluzione può 

essere analiticamente approssimata per alti e bassi livelli di iniezione 

ricavando, rispettivamente: 
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Il tempo di vita medio per bassi livelli di iniezione e per un semiconduttore 

estrinseco può essere approssimato da: 

(1.27)  0

0

     n-type
     p-type

p
low

n

τ
τ

τ
⎧

= ⎨
⎩

Il valore di SRHτ  per regioni intermedie dipende da n∆  ed è dato da: 

(1.28) 0 0

0 0

( )low high
SRH

n p n
n p n

τ τ
τ

+ + ∆
=

+ + ∆
 

Osservando l’equazione (1.26) si evince che il tempo di vita medio ad alti 

livelli non dipende dal drogaggio del semiconduttore ma solo dai parametri 

legati ai livelli energetici profondi. Il valore effettivo del tempo di vita per una 

qualsivoglia concentrazione in eccesso n∆  varia tra  highτ  e lowτ . Ne viene fuori 

che il tempo di vita medio aumenta solitamente coll’aumentare di  poichè n∆

lowτ < highτ . Ciononostante il processo si inverte per regioni a basso drogaggio. 

Teniamo comunque in mente che questa teoria (SRH) cessa di valere quando 

la concentrazione dei livelli energetici profondi eccede la concentrazione dei 

portatori maggioritari. 

 

1.4 Il processo di ricombinazione superficiale 
1.4.1 Introduzione 

Il termine superficie è usato ogni volta che si deve identificare una regione tra 

due mezzi differenti. La superficie che separa due mezzi solidi, è di solito 

chiamata interfaccia, come ad esempio Si-SiO2  oppure un’interfaccia metallo-

semiconduttore; la superficie di separazione  tra un  semiconduttore ed  il 

vuoto, un gas o  un liquido,  in  genere è  identificata come interfaccia libera. 

Nel corso di questa trattazione non considereremo questa differenza di 

definizione, specificando a che cosa facciamo riferimento quando occorre. Il 
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fatto che la struttura periodica del cristallo sia interrotta in superficie da vita a 

delle bande di energia, dette stati superficiali. L’esistenza di questi stati è stata 

proposta per primo da Tamm nel_1932, in linea con il suo approccio 

meccanico quantistico, che si basò sul modello monodimensionale di Kronig e 

Penney. Il suo lavoro fu in seguito esteso al caso di due e tre dimensioni, 

inoltre i risultati teorici sono stati avvalorati dai risultati sperimentali, in modo 

particolare per l’interfaccia Si-SiO2, che è stata oggetto di lunghi studi data la 

sua importanza nel funzionamento di dispositivi quali il Mosfet. E’ stato 

dimostrato che gli stati superficiali sono distribuiti sopra la banda proibita e 

sono classificati come stati accettori o donatori. Compatibilmente con il loro 

stato di occupazione, questi stati  possono essere disponibili per il processo di 

ricombinazione, o aumentare o diminuire il potenziale  lungo la superficie 

insieme alla carica indotta negli strati di ossido. Le cariche nello strato di 

ossido consistono delle cariche fisse, delle cariche mobili dovute alle 

contaminazioni ioniche e dalle cariche intrappolate all’interno dell’ossido. 

Al fine di semplificare il modello i diversi tipi di  cariche nell’ossido sono 

considerate come un’unica carica superficiale costante. Il processo di 

ricombinazione superficiale consiste di due sub-processi: lo stesso processo di 

ricombinazione, ed il trasporto di portatori liberi attraverso la regione di carica 

spaziale verso la superficie. Il processo si fermerà se viene a mancare uno dei 

due sub-processi. Irradiando il campione  con  dei  fotoni ad  energia  

maggiore  della  banda  proibita,     sposteremo lo pseudo livello di Fermi di 

elettroni e lacune cosicché cambierà il numero di stati disponibili per la 

ricombinazione ed in questo modo cambierà anche il potenziale elettrostatico 

in superficie ed il trasporto di portatori liberi verso la superficie. Nel prossimo 

sottoparagrafo descriveremo le proprietà dell’interfaccia Si-SiO2 così come 

descriveremo il meccanismo ed il modo per determinare la velocità di 

ricombinazione superficiale totale. 
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Fig.1.2 

 

1.4.2 L’interfaccia silicio – biossido di silicio 

Il motivo per cui il silicio assume una così grande importanza 

IC può essere attribuito in massima parte alle notevoli propr

Si-SiO2. Le proprietà di semiconduttore ideale del silicio pos

essere combinate con quelle di dielettrico ed isolante ide

accresciuto termicamente sul substrato di silicio. Le proprietà d

Si-SiO2 sono fortemente condizionate dalla presenza degli s

dalle cariche fisse, dalle cariche mobili e dalle cariche intra

nell’ossido. Questi influenzano il processo di ricombinazione

di portatori liberi verso la superficie del silicio. Al fine 

processo di ricombinazione totale, è stata data grande enfasi 

proprietà del sistema Si-SiO2. 

1.4.3 La struttura atomica 

La figura 1.2 mostra una rappresentazione bidimensionale

atomica dell’interfaccia Si-SiO2, nella quale si può chiarame

regione di transizione tra le due superfici. Il rapporto tra la

legame Si-O-Si ed Si-Si è circa uguale a √2. Questo fa sì

accoppiamento perfetto tra la struttura cristallina del silici

silicio, che da vita ad una zona di transizione. Questo è inoltre

flessibilità dell’angolo del  legame Si-O-Si. Tuttavia come si p
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figura, alcuni legami di silicio rimangono insoddisfatti. La densità di questi 

legami insoddisfatti è governata da processi quali la pulizia e la passivazione 

della superficie, dallo spessore dell’ossido e dai processi di annealing a cui è 

sottoposta la struttura. Durante i processi di passivazione e di annealing i 

legami insoddisfatti reagiscono con atomi diversi come l’idrogeno, in modo 

da ridurre l’attività chimica della superficie. E’ stato mostrato che una pulizia 

della superficie con HF, limita il processo di ossidazione e la diffusione degli 

atomi di ossigeno nel substrato. Nella regione di transizione possiamo 

considerare una struttura atomica descritta come SiOx con x<2. In genere lo 

spessore di tale struttura è comunemente considerato di 25 . A
o

1.4.4 Gli stati all’ interfaccia 

Come conseguenza della struttura atomica descritta nella sezione precedente, 

gli elettroni nei legami insoddisfatti di silicio,  sono sottoposti ad un 

potenziale diverso che nella struttura cristallina periodica. Il legame 

insoddisfatto appartiene ad un atomo di silicio il quale è legato ad altri tre 

atomi di silicio, il così detto “threefold silicon atom”, che crea stati di 

interfaccia o stati superficiali veloci nella banda proibita. E’ stato mostrato che 

solo i legami insoddisfatti creano stati nella banda proibita, mentre la 

distorsione angolare dei legami induce semplicemente una coda nella banda di 

valenza e di conduzione vicino ai bordi delle stesse. Visto che gli stati di 

interfaccia sono direttamente contigui al substrato di silicio, ci può essere un 

trasferimento di portatori tra gli stati di interfaccia e il substrato stesso. 

Quando i legami insoddisfatti vengono saturati mediante passivazione della 

superficie ad esempio con HF, le bande di energia risultanti in superficie sono 

traslate nelle bande di conduzione o di valenza, in modo da ridurre la 

concentrazione di stati superficiali. La riduzione della concentrazione degli 

stati superficiali mediante la passivazione con HF è confermata con la tecnica 

dello “Scanning Tunneling Microscopy (STM)” . In superficie stati donatori o 

accettori sono statisticamente distribuiti sopra la banda proibita.  La  
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Fig. 1.3 

distribuzione di questi stati energetici dipende dalla procedura di ossidazione  

e dal trattamento di pre-ossidazione così come dal drogaggio di substrato. 

Sono stati sviluppati diversi modelli per descrivere la distribuzione di questi 

stati, come ad esempio due gaussiane oppure  una distribuzione ad U o 

parabolica. I due modelli proposti sono in buon accordo all’interno della 

banda, ma sono estremamente diversi quando ci si avvicina ai bordi della 

banda, come si può vedere dalla figura 1.3. La forte differenza  in 

corrispondenza dei bordi non è molto importante in quanto tali  stati danno un 

contributo trascurabile al processo di ricombinazione. E’ stata sviluppata una 

grande varietà di metodi per misurare i parametri che caratterizzano gli stati di 

interfaccia come le misure di conduttanza di un capacitore MOS e molti altri 

ancora. 

1.4.5 Le cariche fisse nell’ossido  

I legami insoddisfatti che appartengono all’atomo di silicio legato a sua volta 

con tre atomi di ossigeno nello strato di ossido di silicio creano una carica 

positiva chiamata appunto carica fissa nell’ossido (figura 1.2). Tale carica è 

caratterizzata dall’incapacità di scambiare la sua carica con il substrato di 
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silicio e dal fatto di essere stabile ed immobile anche se sottoposta a grandi 

campi elettrici o a forti temperature. La carica fissa è sempre positiva, 

indipendentemente dal tipo di drogaggio di substrato e dalla sua 

concentrazione, e la sua densità varia in un range di 1010÷1013 cm-2, ed è 

localizzata a circa 25 A  dall’interfaccia, in una regione di transizione SiO
o

x 

non stechiometrica .Anche l’eccesso di ioni silicio presenti nell’SiO2 dà vita 

ad una carica fissa nell’ossido. Durante l’ossidazione termica del silicio, gli 

atomi di ossigeno diffondono attraverso gli strati di SiO2 per raggiungere 

l’interfaccia e dare vita ad un nuovo strato di SiO2. Allo stesso tempo un 

eccesso di atomi di silicio è presente vicino all’interfaccia al fine di reagire 

con l’ossigeno. Quando il processo di ossidazione termina gli atomi di silicio 

in eccesso rimangono bloccati in prossimità dell’interfaccia e danno vita ad 

una carica positiva. La concentrazione della carica fissa presente nell’ossido è 

fortemente legata al processo di ossidazione, alla temperatura, alle condizioni 

di raffreddamento ed all’orientazione dello strato superficiale del silicio. 

Questa carica positiva, attrae gli elettroni e respinge le lacune dalla superficie, 

così da provocare in corrispondenza della superficie un’accumulazione per un 

campione di silicio di tipo n ed uno svuotamento o inversione alla superficie 

di un campione di silicio di tipo p. Così come gli stati di interfaccia la carica 

fissa può essere eliminata con processi di annealing al fine di saturare i legami 

insoddisfatti con altri atomi. 

1.4.6 Le cariche mobili 

 Tale carica è prevalentemente dovuta alla presenza di ioni alcalini di tipo Na+ 

e K+, che sono intrappolati nell’ossido durante i processi che coinvolgono il 

campione. Una caratteristica di questi ioni è la loro elevata mobilità per cui  

possono migrare all’interno dell’ossido anche sotto l’azione di deboli campi 

elettrici, anche a temperatura ambiente. Una diminuzione della temperatura 

causa una diminuzione della mobilità degli ioni nell’SiO2.  La mobilità degli 

 - 25 -



ioni Na+ e K+ nell’SiO2  può essere approssimata attraverso la seguente 

espressione in un intervallo di temperatura compreso tra 300 e 450 °C: 

(1.29) 
1.0917.46( ) kTT e

T
µ

−

=  

dove µ(T) è la mobilità , in funzione della temperatura assoluta, espressa in 

cm2/Vs. Gli ioni mobili possono anche essere intrappolati da siti trappola 

locati in corrispondenza della superficie in particolare a circa 50 . Lo ione 

K

A
o

+ mostra una maggiore propensione ad essere intrappolato rispetto allo ione 

Na+. Questi ioni possono dare vita ad una carica superficiale equivalente ed 

avere effetti sul potenziale superficiale. Le cariche mobili possono essere 

minimizzate attraverso la pulizia dei forni con miscele O2 e HCL, attraverso la 

crescita degli ossidi in ambienti O2 – HCL o mediante protezione del 

semiconduttore con strati dielettrici impermeabili agli ioni alcalini. 

1.4.7 Cariche intrappolate nell’ossido 

Queste cariche sono dovute a difetti nell’ossido come impurità o legami 

incompleti; e possono essere ridotte con processi di annealing simili a quelli 

utilizzati per ridurre gli stati all’interfaccia. Sebbene neutre, possono diventare 

cariche a causa di portatori energetici che superano la barriera di potenziale, 

oppure portatori generati da radiazione ionizzante.  

1.4.8 Il diagramma delle bande di energia in prossimità dell’interfaccia 

Nelle precedenti sezioni abbiamo discusso dei parametri più importanti 

dell’interfaccia Si- SiO2. La carica totale per questo tipo di interfaccia può 

essere classificata in quattro categorie diverse: le cariche all’interfaccia, le 

cariche fisse nell’ossido, gli ioni mobili e le cariche intrappolate nell’ossido; 

ma solo le prime sono in contatto con il substrato e possono scambiare 

portatori di carica con esso. 
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Fig. 1.4 

La figura 1.3 mostra il diagramma delle bande di energia per un interfaccia Si- 

SiO2 per un campione di silicio di tipo p sottoposto ad illuminazione ottica . 

Da tale figura è facilmente osservabile la distribuzione gaussiana degli stati 

accettori e donatori Hta e Htd, le cariche fisse nell’ossido le cariche 

intrappolate nell’ossido e le contaminazioni di ioni.  La curvatura della banda, 

ψ0 è causata in parte dalla ionizzazione degli stati di interfaccia dipendenti 

dalla concentrazione di elettroni e lacune, ed in parte dalla carica totale indotta 

nell’ossido. Livelli di illuminazione molto alti, appiattiscono le bande, 

qualsiasi sia la carica superficiale, a causa della presenza di un elevatissimo 

eccesso di portatori. In maniera approssimata possiamo dire che gli stati 

donatori e accettori ionizzati sono localizzati sopra e sotto lo pseudo livello di 

Fermi, Efn ed Efp rispettivamente per gli elettroni e per le lacune, il resto dei 

livelli sono non ionizzati e disponibili per la ricombinazione. La 

ricombinazione dei portatori in superficie è accompagnata da un eccesso di 

elettroni nel volume che vengono trasportati attraverso la regione di carica 

spaziale da correnti di diffusione e di trasporto quando non è presente un 
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contatto in superficie.  In seguito all’illuminazione, il livello di Fermi di 

elettroni e lacune sarà separato ed lo pseudo livello di Fermi aumenterà. Il 

gradiente dello pseudo livello di Fermi per gli elettroni e le lacune nella 

regione di carica spaziale è proporzionale alla densità di corrente di elettroni e 

lacune. E’ molto importante conoscere la variazione dello pseudo livello di 

Fermi nella regione di carica spaziale e specialmente la sua posizione in 

superficie, che determina il numero di stati di interfaccia ionizzati  e quelli 

disponibili per la ricombinazione. 

1.4.9 La velocità di ricombinazione superficiale 

Abbiamo visto come l’interruzione, in superficie, della struttura cristallina 

ideale, introduca ulteriori stati energetici in banda proibita, questi stati 

influenzano il processo di ricombinazione in un modo molto simile al modello 

di Shockley-Read-Hall per la ricombinazione nel substrato. In ogni modo 

poichè i portatori che si ricombinano in prossimità della superficie del 

campione di silicio possono essere considerati alla stregua di una corrente che 

fluisce all’esterno del campione stesso, è molto semplice modellare la 

presenza dei centri di ricombinazione vicino alla superficie con una 

condizione al contorno costante che lega il valore della concentrazione dei 

portatori ed il loro gradiente in corrispondenza della superficie. Questo 

parametro costante che è generalmente indicato con il nome di Surface 

Recombination Velocity o SRV è dato da: 

(1.30) 1

boundary

nSRV D
n x
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

 

nel caso in cui x è la coordinata spaziale e stiamo considerando un problema 

monodimensionale. 
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Capitolo 2 

Soluzione analitica dell’equazione della 

diffusione in regime di bassa iniezione 
 

2.1 Introduzione 

x

y

Impulso
LASER hν

D
τB

S1
S2

 

Fig 2. 1 

Nel primo capitolo di questa tesi abbiamo spiegato i fondamenti teorici sia del 

processo di ricombinazione nel substrato sia di quello in superficie. In questo 

capitolo analizzeremo l’andamento dell’eccesso di portatori minoritari 

prodotto in un wafer di silicio da un impulso laser di energia maggiore della 

banda proibita che caratterizza il semiconduttore. L’obbiettivo finale di 

quest’analisi è quello di determinare il tempo di vita medio nel substrato, Bτ , e 

la velocità di ricombinazione superficiale SRV. Per fare questo considereremo 

il modello analitico di Luke e Cheng [8] esteso da Kousik, Ling ed Ajmera 

[4,5] al caso di velocità di ricombinazione superficiale diversa per le due facce 

del semiconduttore. 
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2.2 Analisi del modello di Luke e Cheng 

L’obbiettivo di quest’ analisi è quello di risolvere l’equazione della diffusione 

nel caso di interazione di un impulso laser di forma arbitraria con un wafer di 

silicio di spessore d, uniformemente drogato e libero da campi elettrici. 

L’intensità del fascio laser è tenuta abbastanza bassa in modo da mantenere il 

campione di silicio in condizioni di bassi livelli di iniezione in ogni punto e 

durante l’intero processo di iniezione dei portatori liberi. In questo caso  il 

tempo di vita medio dei portatori nel substrato, Bτ , e la velocità di 

ricombinazione superficiale, SRV, possono essere considerati costanti durante 

l’intero processo di ricombinazione. 

L’equazione della diffusione è: 

(2.1) 2

B

n nD n g
t τ

∂
= ∇ − +

∂
 

che può essere risolta insieme con le condizioni al contorno 

(2.2) S S
D n n Sn

∂ ∂
∇ ⋅ =)  

dove n è la concentrazione dei portatori minoritari in eccesso funzione delle 

coordinate spaziali e del tempo, D è il coefficiente di diffusione dei portatori 

minoritari e S la velocità di ricombinazione superficiale (che può essere 

diversa per le diverse facce del dispositivo). Inoltre è nota la funzione di 

generazione,  dei portatori minoritari in coordinate spaziali. ( , , , )g x y z t

  

2.2.1 Caso monodimensionale 

Nel caso monodimensionale, le (2.1),(2.2) diventano: 

(2.3) 
2

2

( , ) ( , ) ( , ) ( ) ( )
B

n x t n x t n x tD g
t x

x tδ
τ

∂ ∂
= − +

∂ ∂
 

(2.4) 
0

2

1

2

( , ) ,
2

( , ) ,
2

dx

dx

n x t dD S n
x

n x t dD S n
x

−
=

=

∂ −⎧ ⎛ ⎞= ⎜ ⎟⎪ ∂ ⎝ ⎠⎪
⎨

∂ ⎛ ⎞⎪− = ⎜ ⎟⎪ ∂ ⎝ ⎠⎩

t

t
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dove  D è il coefficiente di diffusione dei minoritari,  è la velocità di 

ricombinazione sulla faccia anteriore del campione, dove impatta l’impulso 

laser, e  è la velocità di ricombinazione sulla faccia posteriore. 

0S

1S

Per un wafer irradiato con luce monocromatica di lunghezza d’onda λ, e 

assumendo che ogni fotone assorbito crei una coppia elettrone-lacuna, la 

funzione di generazione dei portatori minoritari, , nell’equazione (2.3), 

che tenga conto degli effetti di riflessione multipla da parte di entrambe le 

superfici del campione è data dalla seguente espressione: 

( )g x

(2.5) 
2 2

0 2 2

Re( ) (1 )
1

d dx x
d

d

e eg x N R
R e

α α
α

αα

⎛ ⎞ ⎛ ⎞− + − − +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−

+
= −

−
 

dove R è il coefficiente di riflessione delle superfici, α  è il coefficiente di 

assorbimento ottico alla lunghezza d’onda dell’impulso laser1 ed  è il 

numero di fotoni incidenti sulla superficie del campione per unità di area. 

Osserviamo che per R=0 si ha assenza di riflessione mentre per R=1 si ha 

riflessione totale. 

0N

Metodo di separazione delle variabili 

Assumiamo: 
( , ) ( ) ( )n x t A x B t=  

allora, sostituendo questa nell’equazione (2.4) e raccogliendo le variabili e 

separando otteniamo le seguenti due equazioni: 

(2.6) 
2

2
2

2

1 0

0

B

dB a D B
dt

d A a A
dx

τ
⎛ ⎞

+ + =⎜ ⎟
⎝ ⎠

+ =

 

Queste equazioni possono essere facilmente risolte in modo da ottenere la 

soluzione generale della (2.4): 

                                                 
1 Considereremo i casi di alto coefficiente di assorbimento, 

1292cmα −= , corrispondente ad una lunghezza d’onda di 

0.904 mλ µ=  che è emesso da un laser di GaAs; ed il caso di basso coefficiente di assorbimento, 
110cmα −=  che 

corrisponde ad una lunghezza d’onda di 1.06 mλ µ= di un laser Nd:Yag. 
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(2.7) ( ) 2

( , ) cos sin kB

t
a Dt

k k k k
k

n x t e A a x B a x eτ
−

−= +∑  

dove  ed  sono costanti, e la sommatoria è necessaria per soddisfare la 

condizione iniziale. 

,k kA B ka

Ora applicando le condizioni al contorno (2.5) otteniamo l’equazione 

caratteristica necessaria per determinare   : ka

(2.8) 1 10 1tan tank
k k

S Sa d k
Da Da

π− −⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
+

1

 

con k intero. Se  l’equazione (2.9) diventa: 0S S=

(2.9) 1 12 tank
k

Sa d k
Da

π− ⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

Ponendo 
2
k

k
a dz = , possiamo scrivere  in termini di kA kB  come: 

(2.10) 0

0

cos sin
sin cos

k k k
k k

k k k

Da z S z
k kA B b B

Da z S z
+

= − = −
−

 

La soluzione generale diventa: 

(2.11) ( ) 2

( , ) cos sin kB

t
a Dt

k k k k
k

n x t e B b a x a x eτ
−

−= +∑  

In questo modo il coefficiente kB  è l’unico che deve essere determinato per 

ricavare completamente la soluzione . ( , )n x t

É possibile dimostrare che i termini nella sommatoria che dipendono da x 

formano in insieme di funzioni ortogonali per il quale vale la seguente 

relazione : 

(2.12) ( ) ( )' ' '
2

2

cos sin cos sin 0
d

d k k k k k k
b a x a x b a x a x dx

−
+ × +∫ =

=

 

per . 'k k≠

Applicando la condizione iniziale otteniamo: 

(2.13)  ( )( ,0) cos sin ( )k k k k
k

n x B b a x a x g x≡ +∑

e quindi tenendo conto dell’equazione (2.6) possiamo determinare kB  
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(2.14) 
( ) ( )

( ) ( ) ( )
' 2
0 2 22

cos sinh sin cosh 1 Re cos sinh sin cosh 1 Re
2 2 2 24

sin sin

d dk k
d k k k k k

k k
k k k k k k

d a d a d db z z z z
B ag e

b ad ad ad ad a

α α
α

α α α α
α αα

α

− −

−

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠= ⎢ ⎥
⎡ ⎤+ + − +⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

dove 

(2.15) ' 0
0 2 2

(1 )
1 d

N Rg
R e α

α
−

−
=

−
 

Abbiamo così completamente determinato la concentrazione . ( , )n x t

La densità media dei portatori in eccesso  nel campione è data da: ( )avgn t

(2.16) 2

2

1( ) ( , )
d

davgn t n x t d
d −= ∫ x  

che risolto da: 

(2.17) 
21 sin( ) k

B
a D t k

avg k k
k k

zn t B b e
z

τ
⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦= ∑  

Osserviamo che per t=0 : 

(2.18) 02

2

1 (1 )((0) ( ,0)
(1 Re )

d d

davg d

N R en n x dx
d d

α

α

−

− −

− −
= =

−∫
1 )  

Trovata la densità media dei portatori in eccesso per una funzione impulsiva 

possiamo usare la tecnica della convoluzione per ottenere lo stesso risultato 

per una forma arbitraria dell’impulso laser G(t) : 

(2.19) 
0

( ) ( ) ( )
t

g avgn t n G t dτ τ τ= −∫  

 

2.2.2 Caso bidimensionale 

Nel caso bidimensionale, le (2.1),(2.2) diventano: 

(2.20) 
2 2

2 2

( , , ) ( , , ) ( , , ) ( , , ) ( , ) ( )
B

n x y t n x y t n x y t n x y tD g x y t
t x y

δ
τ

⎛ ⎞∂ ∂ ∂
= + − +⎜ ⎟∂ ∂ ∂⎝ ⎠

 

(2.21) 
0

2

1

2

( , , ) , ,
2

( , , ) , ,
2

dx

dx

n x y t dD S n
x

n x y t dD S n
x

−
=

=

∂ −⎛ ⎞= ⎜ ⎟∂ ⎝ ⎠

∂ ⎛ ⎞− = ⎜ ⎟∂ ⎝ ⎠

y t

y t
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dove  D è il coefficiente di diffusione dei minoritari,  è la velocità di 

ricombinazione sulla faccia anteriore del campione lungo x, dove impatta 

l’impulso laser, e  è la velocità di ricombinazione sulla faccia posteriore 

lungo x. Inoltre assumeremo che le dimensioni laterali lungo y siano molto 

più grandi di quelle lungo x. Per un wafer irradiato con luce monocromatica di 

lunghezza d’onda λ, e assumendo che ogni fotone assorbito crei una coppia 

elettrone-lacuna, la funzione di generazione dei portatori minoritari, , 

nell’equazione (2.20), che tenga conto degli effetti di riflessione multipla da 

parte di entrambe le superfici del campione è data dalla seguente espressione: 

0S

1S

( , )g x y

(2.22) 
2 2

0 2 2

Re( , ) (1 ) ( )
1

d dx x
d

d

e eg x y N R y
R e

α α
α

αα δ

⎛ ⎞ ⎛ ⎞− + − − +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−

⎡ ⎤
+⎢ ⎥= −⎢ ⎥−

⎢ ⎥⎣ ⎦

 

dove R è il coefficiente di riflessione delle superfici, α  è il coefficiente di 

assorbimento ottico alla lunghezza d’onda dell’impulso laser ed  è il 

numero di fotoni incidenti sulla superficie del campione per unità di area.  

0N

Metodo di separazione delle variabili 

La linearità del problema permette di separare le variabili, per cui possiamo 

scrivere: 

(2.23)  ( , , ) ( , ) ( , )x yn x y t n x t n y t=

La soluzione per  può essere determinata facilmente in quanto le dimensioni 

laterali possono essere assunte infinite, per cui: 

yn

(2.24) 
2

41
2

x
Dt

yn e
Dtπ

−

=  

Questa relazione corrisponde ad una funzione gaussiana a media nulla e 

varianza pari a 2Dt . La soluzione per  procede come nel caso 

monodimensionale ed è data dalla (2.11). La densità media dei portatori in 

eccesso  nel campione è data da: 

xn

( )avgn t

(2.25) 2 2

2 2

1( ) ( , , )
d h

d havgn t n x y t dxdy
dh − −= ∫ ∫  
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dove h è la dimensione del campione lungo y e d quella lungo x. 

Trovata la densità media dei portatori in eccesso per una funzione impulsiva 

possiamo usare la tecnica della convoluzione per ottenere lo stesso risultato 

per una forma arbitraria dell’impulso laser. 

 

2.3 Validità del modello analitico 

Il modello di Luke e Cheng è valido in un semiconduttore in cui i parametri 

ricombinativi, cioè Bτ  e SRV sono costanti durante l’intero processo di 

ricombinazione. Questo vincolo per Bτ  è certamente soddisfatto quando ci 

troviamo in condizioni di bassi livelli d’iniezione, cioè quando la densità dei 

portatori iniettati è molto minore della densità dei portatori all’equilibrio nel 

materiale semiconduttore, cioè quando 0n n∆ = . Per quanto riguarda la 

velocità di ricombinazione superficiale, SRV, all’interfaccia Si-SiO2 , mentre 

essa per un semiconduttore di tipo-N non varia, cioè è costante, a bassi livelli 

d’iniezione; per un semiconduttore di tipo-P , essa varia significativamente 

anche a bassi livelli d’iniezione rendendo non valido il modello analitico 

descritto sopra. Inoltre il modello risulta non valido anche nel caso di 

semiconduttori ricoperti solo dall’ossido nativo, pochi angstroms, e nel caso di 

materiale ossidante diverso dal biossido di silicio. In questi casi riterremo 

comunque costante la SRV durante l’intero processo ricombinativo salvo poi 

testare la validità di quest’ assunzione attraverso l’analisi dei risultati 

sperimentali. In appendice A sono riportati i listati delle funzioni MatLab che 

implementano l’algoritmo analitico di risoluzione dell’equazione della 

diffusione riportato in questo capitolo e poter così effettuare i confronti con 

l’algoritmo numerico di cui parleremo nel prossimo capitolo, al fine di testare 

la validità di quest’ultimo a bassi livelli di iniezione.   
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Appendice al Capitolo 2 

A.2.1 Modello analitico della mobilità  

Come alternativa ai valori tabellati in funzione della concentrazione a T=300K 

per il silicio, si può utilizzare un modello analitico elaborato da D.B.M. 

Klaassen [29] denominato “Philips Unified Mobility”, che è un modello in 

grado di descrivere la mobilità dei portatori maggioritari e minoritari, ed 

inoltre prende in considerazione i seguenti effetti: 

• Scattering sia degli accettori che dei donatori 

• Scattering tra portatore e portatore 

• Screening 

Tale modello è particolarmente adatto ai dispositivi bipolari. La mobilità degli 

elettroni è descritta dalle seguenti relazioni: 

 (2.26) 
,

1 1 1

n latt n D Aµ µ µ + +

= +
P

 

 
dove 

 (2.27) 

.

,

.

,
, ,

, , , , ,

.
300

.

TETN UM

latt n

ALPN UM

sc n
D A P N n c n

sc eff n sc n sc eff n

TMMXN UM

N NRFN UM n p
N N N

µ

µ µ µ

−

+ +

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞ +
= +⎜ ⎟

⎝ ⎠

 

, , , , ,, , ,N n c n sc n sc eff nN Nµ µ  sono date dalle seguenti espressioni 

 (2.28) 

( )3 . 12

,

0.5

,

* *
,

* *
, ,

.
. . 300

. .
. . 300

( )
( )

ALPN UM

N n

c n

sc n D A

sc eff n D A n
n

MMXN UM T
MMXN UM MMNN UM

MMXN UM MMNN UM T
MMXN UM MMNN UM

N N N p
pN N N G P

F P

µ

µ

.5−
⎛ ⎞= ⎜ ⎟− ⎝ ⎠

⋅ ⎛ ⎞= ⎜ ⎟− ⎝ ⎠
= + +

= + +

 

I livelli effettivi di impurità *
DN  ed  contemplano anche gli effetti di 

altissimi livelli di iniezione e sono definiti come: 

*
AN
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 (2.29) 

*
2

*
2

11
..

11
..

D D

D

A A

A

N N
NRFD UMCRFD UM

N

N N
NRFAUMCRFAUM

N

⎡ ⎤
⎢ ⎥
⎢ ⎥= +⎢ ⎥⎛ ⎞⎢ ⎥+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥= +⎢ ⎥⎛ ⎞⎢ ⎥+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

Le funzioni  e , portano in conto la massa finita delle lacune 

coinvolte nello scattering ed il potenziale repulsivo degli accettori, sono 

espresse come: 

( )nF P ( )nG P

 (2.30) 

0.6478

0.6478

0.19778 1.806180.28227 0.72169

0

0

0.7643 2.2999 6.5502
( )

2.3670 0.8552

0.89233 0.005978( ) 1
3000.41372

300

e
n

h
n

e
n

h

n

e
n n

e

mP
mF P mP

m

G P
m T mP P
m m T

+ +
=

+ −

= − +
⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞

+⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎤
⎥
⎥⎦

 

Il parametro  che considera gli effetti di screening vale: nP

 (2.31) 

1

2

13 2 / 3 20
,

0

2.459 3.828
3.97 10 3001.36 10n

sc n e

TP
N m

n p m

−

−

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟= + ⎜ ⎟⎜ ⎟× ⎛ ⎞× ⎝ ⎠
⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

 

É possibile ottenere espressioni simili per le lacune. La massa effettiva per 

elettroni e lacune vale  ed  01.0em = m m01.258hm =  dove  è la massa di un 

elettrone libero. 

0m
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Capitolo 3 

Soluzione numerica dell’equazione della 

diffusione col metodo delle differenze finite in 

regime di iniezione arbitrario 
 

3.1 Introduzione 

Il calcolo numerico oggi viene usato in campi dove era virtualmente assente 

prima del 1950. L’alta velocità computazionale dei calcolatori, ha reso 

possibile la soluzione di problemi scientifici ed ingegneristici di grande 

complessità. Questa capacità ha in effetti stimolato molto la ricerca 

nell’analisi numerica rendendo possibile lo sviluppo di tecniche di analisi 

altrimenti irrealizzabili. Uno dei più importanti risultati dei metodi discreti è 

quello di ridurre un sistema continuo in un sistema discreto equivalente che è 

facilmente risolvibile attraverso l’utilizzo del computer. All’inizio si può 

certamente essere ingannati dal fatto che questa tecnica può apparire 

elementare, ma il suo uso indiscriminato può condurre facilmente in errore. 

L’approssimazione base è quella di considerare un dominio continuo D  come 

costituito da una rete o una maschera di punti discreti all’interno di D stesso 

come mostrato in figura 3.1 nel caso di un dominio bidimensionale. Viene poi 

calcolata una soluzione per ogni punto della griglia. I valori intermedi oppure 

i valori di integrali, derivate ed altri operatori possono essere ottenuti da 

questa soluzione attraverso le tecniche di interpolazione. La discretizzazione 

delle equazioni e delle condizioni al contorno che governano un problema 

continuo, potrebbe essere compiuta fisicamente, ma molto più spesso è 

ottenuta matematicamente. Nell’approccio fisico il modello discreto è ottenuto 

mettendo insieme le caratteristiche fisiche del sistema continuo. Ad esempio  
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Fig 3. 1 

una lastra per la conduzione del calore potrebbe essere considerata come una 

rete di barrette conduttive. Le equazioni che governano il sistema continuo 

sono quindi sviluppate attraverso la diretta applicazione delle leggi fisiche al 

sistema discreto. Nell’approccio matematico, la formulazione continua è 

trasformata in una rappresentazione discreta attraverso l’uso delle derivate. 

Quando la formulazione del problema continuo è già disponibile questa 

procedura è molto semplice ed anche molto flessibile. Noi limiteremo la 

nostra attenzione all’approccio matematico. 

Lo sviluppo delle approssimazioni discrete può essere ottenuto in diversi 

modi, noi ci occuperemo del metodo delle differenze finite. 
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3.2 Metodo delle differenze finite 

In questo paragrafo noi esamineremo le idee fondamentali che stanno dietro la 

soluzione numerica diretta delle equazioni differenziali con il metodo delle 

differenze finite. Ci sono molti modi di ottenere la rappresentazione alle 

differenze finite delle derivate. Quello più semplice viene attraverso la stima 

delle derivate usando l’espansione in serie di Taylor: 

(3.1) ( ) ( )
0 0 0

2 32 3

0 0 2 3( ) ( )
2 6x x x

x xdf d f d ff x x f x x
dx dx dx

∆ ∆
+ ∆ = + ∆ + + + ...        

e risolvendo in funzione di 
0x

df
dx

: 

(3.2) 
0 0

2
0 0

2

( ) ( ) ...
2x x

df f x x f x x d f
dx x dx

+ ∆ − ∆
= −

∆
−  

oppure: 

(3.3) 
0

0 0( ) ( ) ( )
x

df f x x f x x
dx x

+ ∆ −
= +

∆
Ο ∆  

dove l’ultimo termine è chiamato “errore di troncamento”. In questo caso 

l’errore di troncamento è ( )xΟ ∆ .  Quando l’ordine dell’errore di troncamento è 

( )xΟ ∆ , l’approssimazione è “accurata al primo ordine”, e l’errore è 

direttamente proporzionale a x∆ . Quest’ approssimazione della derivata prima 

è nota come differenza in avanti, in quanto fa uso solo dell’informazione 

seguente 0x . Un’altra approssimazione della derivata, fa uso solo 

dell’informazione precedente al punto di interesse, ed è nota come differenza 

all’indietro: 

(3.4) ( ) ( )
0 0 0

2 32 3

0 0 2 3( ) ( ) ...
2 6x x x

x xdf d f d ff x x f x x
dx dx dx

∆ ∆
− ∆ = − ∆ + − +  

oppure, risolvendo in funzione della derivata prima: 

(3.5) 
0

0 0( ) ( ) ( )
x

df f x f x x x
dx x

− − ∆
= +

∆
Ο ∆  

ed è ancora accurata al primo ordine. 
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In molti casi viene richiesta una rappresentazione alle differenze finite più 

accurata; ciò può essere ottenuto o diminuendo il passo , oppure 

utilizzando una approssimazione della derivata con errore di troncamento 

x∆

2( )xΟ ∆  in quest’ultimo modo l’accuratezza richiesta può essere ottenuta con 

meno punti griglia. Un’ approssimazione al secondo ordine, 2( )xΟ ∆ , può 

essere ottenuta sottraendo le  serie di Taylor precedenti:  

(3.6) ( )
0 0

3 3

0 0 3( ) ( ) 2 ...
3x x

xdf d ff x x f x x x
dx dx

∆
+ ∆ − − ∆ = + ∆ + +  

Qui i termini di ordine ( )xΟ ∆  si cancellano nella sottrazione. Quando poi 

dividiamo per 2 x∆ e risolviamo mettendo in evidenza la derivata prima, 

otteniamo un’ espressione con errore di troncamento 2( )xΟ ∆ . L’espressione 

che ne viene fuori per la derivata prima è: 

(3.7) 
0

20 0( ) ( ) ( )
2x

df f x x f x x x
dx x

+ ∆ − − ∆
= +

∆
Ο ∆  

Questa è la formula alle differenze al centro accurata al secondo ordine, in 

quanto l’informazione ci viene da entrambi i lati del punto d’interesse. In 

modo simile possiamo ottenere l’approssimazione alle differenze finite per la 

derivata seconda. Sommando le espressioni delle serie di Taylor per le 

espansioni in avanti e all’indietro, otteniamo la seguente espressione, dove i 

termini dispari si cancellano: 

(3.8) ( ) ( )
0

2
2 4

0 0 0 2( ) ( ) 2 ( )
x

d ff x x f x x f x x x
dx

+ ∆ + − ∆ = + + ∆ +Ο ∆  

e quindi risolvendo in funzione di 
0

2

2
x

d f
dx

: 

(3.9) ( )
0

2
20 0 0

2 2

( ) 2 ( )
( )

x

f x x f x f x xd f x
dx x

+ ∆ − + − ∆
= +Ο ∆

∆
 

Le formule date sopra son quelle più frequentemente utilizzate 

nell’approssimare le derivate usando il metodo delle differenze finite. 

Ulteriori espressioni possono essere derivate per il caso di punti distribuiti non 
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uniformemente. In generale l’errore di troncamento per il caso di punti 

spaziati in maniera non uniforme è peggiore del caso di punti spaziati 

uniformemente. In pratica, se la griglia è spaziata in maniera ragionevole ciò 

non rappresenta un grave problema. Quello di cui abbiamo bisogno è di 

ottenere una formula alle differenze al centro per la derivata prima, e 

un’espressione per la derivata seconda. Per prima cosa consideriamo le 

espansioni in serie di Taylor in avanti e all’indietro. Comunque, la distanza tra 

i punti sarà differente nelle due direzioni. Usando  x+∆ e x−∆  per distinguere 

tra le due direzioni, possiamo riscrivere le (3.1),(3.4): 

(3.10) ( ) ( )
0 0 0

2 3
2 3

0 0 2 3( ) ( ) ...
2 6x x x

x xdf d f d ff x x f x x
dx dx dx

+ +
+ +

∆ ∆
+ ∆ = + ∆ + + +  

(3.11) ( ) ( )
0 0 0

2 3
2 3

0 0 2 3( ) ( ) ...
2 6x x x

x xdf d f d ff x x f x x
dx dx dx

− −
− −

∆ ∆
− ∆ = − ∆ + − +  

Posto x xα+∆ = ∆ − . Possiamo ottenere le espressioni desiderate , sostituendo 

x+∆  con xα −∆ nella prima e moltiplicando per α la seconda. Le espressioni 

risultanti sono: 

(3.12) ( ) ( )
0 0 0

2 3
2 3

0 0 2 3( ) ( )
2 6x x x

x xdf d f d ff x x f x x
dx dx dx

α α
α

− −
+ −

∆ ∆
+ ∆ = + ∆ + + + ...  

(3.13) ( ) ( )
0 0 0

2 3
2 3

0 0 2 3( ) ( ) ...
2 6x x x

x xdf d f d ff x x f x x
dx dx dx

α α α α α
− −

− −
∆ ∆

− ∆ = − ∆ + − +  

Per ottenere l’espressione per la derivata prima, sottraiamo le equazioni 

precedenti: 

(3.14) ( ) ( )
0 0

2 2
2

0 0 0 0 2( ) ( ) ( ) ( ) 2 ...
2 2x x

x xdf d ff x x f x x f x f x x
dx dx

α
α α α α

− −
+ − −

⎡ ⎤∆ ∆
⎢ ⎥+∆ − −∆ = − + ∆ + − +
⎢ ⎥
⎣ ⎦

 

e risolvendo per 
0x

df
dx

: 

(3.15) 
0

0 0 0( ) ( 1) ( ) ( ) ( )
2x

df f x x f x f x x x
dx x

α α
α

+ −
−+ ∆ + − − − ∆

= +
∆

Ο ∆  
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Fig 3. 2 
Per ottenere l’espressione per la derivata seconda, sommiamo: 

(3.16) ( ) ( )
0

2 2
2

0 0 0 0 2( ) ( ) ( ) ( ) ...
2 2 x

x x d ff x x f x x f x f x
dx

α
α α α

− −
+ −

⎡ ⎤∆ ∆
⎢ ⎥+ ∆ + − ∆ = + + + +
⎢ ⎥
⎣ ⎦

 

che risolta per 
0

2

2
x

d f
dx

: 

(3.17) ( )

( )0

2
0 0 0

2 2

( ) (1 ) ( )
( )

(1 )
2

x

f x x f x f x xd f x
dx x

α α
α α

+ −
−

−

+ ∆ − + + − ∆
= +

+ ∆
Ο ∆  

Notiamo che entrambe le equazioni per 1α =  si riducono alle espressioni date 

per una griglia spaziata uniformemente ( )x x− +∆ = ∆ .  

Queste formule possono anche essere usate per rappresentare le derivate 

parziali. Per semplificare la notazione, introdurremo una griglia e una 

notazione ampiamente usata nella descrizione del metodo delle differenze 

finite. La figura 3.2 illustra questa notazione per ( )x y cost∆ = ∆ = .  In questa 

notazione le approssimazioni alle differenze finite per le derivate diventano: 
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PDE Sistema di equazioni
algebriche

Soluzione esatta Soluzione approssimata

Discretizzazione

Consistenza

Convergenza

Stabilità

 

Fig 3. 3 
 

(3.18) 

1, , , 1 ,

, 1, , , 1

1, 1, , 12

( )                       ( )

( )                       ( )

( )                    
2

i j i j i j i j

i j i j i j i j

i j i j i j

f f f ff fx y
x x y y

f f f ff fx y
x x y y

f f ff fx
x x y

+ +

− −

+ − +

− −∂ ∂
= +Ο ∆ = +Ο ∆

∂ ∆ ∂ ∆
− −∂ ∂

= +Ο ∆ = +Ο ∆
∂ ∆ ∂ ∆

−∂ ∂
= +Ο ∆ =

∂ ∆ ∂
, 1 2

2 2
1, , 1, , 1 , , 12 2

2 2 2 2

( )
2

2 2
( )       ( )

i j

i j i j i j i j i j i j

f
y

y
f f f f f ff fx y

x x y y

−

+ − + −

−
+ Ο ∆

∆
− + − +∂ ∂

= +Ο ∆ = +
∂ ∆ ∂ ∆

Ο ∆

 

 

3.2.1 Validità della soluzione numerica 

La figura 3.3 fornisce uno schema dei passi richiesti, e alcuni dei termini 

chiave usati per assicurarci che i risultati ottenuti siano in effetti la soluzione 

dell’equazione alle derivate parziali originale. 

I termini introdotti  richiedono un’ulteriore definizione e discussione: 

• discretizzazione 

• consistenza 

• stabilità 

• convergenza 
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Prima di definire questi termini, consideriamo come esempio la semplice 

equazione differenziale lineare parabolica2 seguente: 

(3.19) 
2

2

u u
t x

α∂ ∂
=

∂ ∂
 

Discretizziamo l’equazione utilizzando le approssimazioni (3.18): 

(3.20) ( )
2 1 2 4 2

1 12 2 2 42 ... 0
2 12

k kk k
k k ki i
i i i

i i

u u u u u t u xu u u
t x t x t x

αα α
+

+ −

⎡ ⎤∂ ∂ − ∂ ∆ ∂ ∆
− = − − + + − + + =⎢ ⎥

∂ ∂ ∆ ∆ ∂ ∂⎢ ⎥⎣ ⎦

 

dove usiamo l’indice in alto per denotare il tempo e quello in basso per 

denotare la posizione spaziale. Nella (3.20) l’equazione alle derivate parziali 

(PDE) è convertita in un’equazione alle differenze finite (FDE). L’errore di 

troncamento è 2( ) ( )t xΟ ∆ +Ο ∆ . Da questa semplice equazione, possiamo 

definire i termini anzidetti: 

discretizzazione 

Questo è il processo di sostituire le derivate con le approssimazioni alle 

differenze finite. Sostituendo le derivate continue con un’ approssimazione in 

un insieme discreto di punti (la griglia), si introduce un errore dovuto al 

troncamento che nasce dall’approssimazione alle differenze finite e dal modo 

di trattare le condizioni al contorno. Riesaminando la rappresentazione in serie 

di Taylor, ad esempio della derivata parziale prima: 

(3.21) 
0

2 3
0 0

3

( ) ( )
2 6x

f f x x f x x x f
x x x
∂ + ∆ − − ∆ ∆

= +
∂ ∆

∂
∂

        

 

possiamo notare che l’errore di troncamento dipende localmente dalla 

soluzione3. Nella maggior parte dei casi ci aspettiamo che l’errore di 

discretizzazione sia più grande dell’errore di arrotondamento4. 

                                         
2 La diffusione o la conduzione di calore in un mezzo isotropico, il flusso di un fluido attraverso un mezzo poroso, la 
persistenza della radiazione solare, ed altre situazioni ancora possono essere modellate attraverso l’equazione parabolica 

(u u
t

α∂
= ∇ ⋅ ∇

∂
)  dove α  può essere costante, una funzione delle coordinate spaziali o ancora una funzione di u  o 

 o entrambe. I problemi fisici che possono essere modellati con l’equazione parabolica sono molto diffusi. u∇
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consistenza 

Una rappresentazione alle differenze finite di una PDE è consistente se la 

differenza tra la PDE e la sua rappresentazione alle differenze FDE si annulla 

quando la griglia è resa più fine: 

(3.22)  ( )
0

lim 0
griglia

PDE FDE
→

− =

Ad esempio se l’errore di troncamento è ( t )
x
∆

Ο
∆

. In questo caso dobbiamo far 

si che la griglia va a zero proprio come: 

(3.23) 
, 0
lim 0
t x

t
x∆ ∆ →

∆⎛ ⎞ =⎜ ⎟∆⎝ ⎠
 

stabilità 

Uno schema è stabile numericamente se gli errori non crescono dopo ogni 

iterazione, così: 

crescita dell’ errore            ->   instabilità 

diminuzione dell’ errore     ->    stabilità 

La  stabilità spesso determina il passo della griglia di discretizzazione. 

convergenza 

La soluzione della FDE dovrebbe tendere alla soluzione della PDE quando la 

griglia viene resa più fine.  Nel caso di un’equazione lineare c’è un teorema 

che dimostra che la soluzione numerica alla FDE è in effetti la soluzione 

dell’equazione differenziale alle derivate parziali originale.  

Teorema di equivalenza Lax-Richtmyer: per un problema lineare a valore 

iniziale, ben posto5, con una rappresentazione alle differenze finite 

consistente, la stabilità è condizione necessaria e sufficiente per la 

convergenza. 

                                                                                                                                                                  

0x∆ →
3

3

f
x

∂
∂

x∆3 Per  l’errore va a zero,ma quando  assume un valore finito,  può assumere valori grandi nei punti in 

cui la soluzione varia rapidamente 
x∆4 C’è un limite inferiore alla misura del passo  dovuto all’uso dell’aritmetica a lunghezza finita; al di sotto l’errore di 

arrotondamento diventa importante. Nella maggior parte dei casi il passo utilizzato nei calcoli alle differenze finite è più 
grande del limite imposto dall’errore di arrotondamento. 
5 Possiamo asserire che un problema fisico è ben posto se la sua soluzione esiste, è unica e dipende in maniera continua 
dai suoi dati ausiliari, cioè dalle condizioni al contorno. 
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Fig 3. 4 

In pratica, è necessario condurre esperimenti numerici per determinare se la 

soluzione sia convergente in funzione del passo della griglia. 

Fin qui abbiamo rappresentato la PDE attraverso una FDE nei punti i,n. La 

PDE è ora un insieme di equazioni algebriche scritte per ogni punto della 

griglia. Nelle tre dimensioni la griglia è definita da IMAXx JMAX x ZMAX  

punti. Vediamo ora come possiamo ottenere la soluzione per ogni punto della 

griglia. 

3.2.2 Schema esplicito 

Usando la notazione di figura 3.4, scriviamo la FDE della (3.19) come: 

(3.24) ( )
1

1 12 2
k k

k k ki i
i i i

u u u u u
t x

α+

+ −
−

= − +
∆ ∆

 

dove la soluzione al passo k è nota. All’istante k+1 c’è solo un incognita. 

Risolvendo : 

(3.25) ( )1
1 12 2k k k k k

i i i i i
tu u u u u

x
α+

+ −
∆

= + − +
∆
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Fig 3. 5 

e così per ogni i possiamo ricavare algebricamente 1k
iu + , per sostituzione. 

L’inconveniente di questo schema, particolarmente semplice, è che per essere 

stabile richiede un passo molto piccolo. 

3.2.3 Schema implicito 

Usando la notazione di figura 3.5, scriviamo la rappresentazione alle 

differenze finite della (3.19) come: 

(3.26) ( )
1

1 1
1 12 2

k k
k k ki i
i i i

u u u u u
t x

α+
+ +
+ −

−
= − +

∆ ∆
1+  

dove stiamo usando le derivate spaziali calcolate all’ istante k+1.  

In questo modo otteniamo un sistema dove in ogni punto i,  dipende da 

tutti i valori all’istante k+1. Questo conduce ad un sistema di equazioni che 

deve essere risolto. 

1k
iu +

Definendo  

(3.27) 2

tr
x

α ∆
=

∆
 

possiamo riscrivere l’equazione (3.26) come: 

(3.28)  1 1 1
1 1(1 2 )    per 1,..., .k k k k

i i i iru r u ru u i N+ + +
− +− + + − = =
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Fig 3. 6 

Questa può essere messa in una forma matriciale particolarmente semplice, 

nota come forma tridiagonale. 

Lo schema implicito richiede la soluzione di un sistema di equazioni ad ogni 

passo ma la stabilità permette di scegliere un passo di griglia più grande. É 

anche possibile usare una media delle approssimazioni alle linee k e k+1, 

figura 3.6, invece dell’equazione (3.28). Tuttavia un’espressione più generale 

può essere ricavata attraverso l’introduzione di un fattore di “carica” λ , 

utilizzando il quale l’equazione (3.28) diventa: 

(3.29) [ ]1 1 1
1 1 1 1(1 2 ) (1 ) 1 2 (1 ) (1 )    per 1,..., .k k k k k k

i i i i i ir u r u r u r u r u r u iλ λ λ λ λ λ+ + +
− + − +− + + − = − + − − + − = N

É interessante osservare che per 0λ =  riotteniamo la formula esplicita, per 

1λ =  la formula puramente implicita, mentre nel caso in cui  0.5λ =  si ottiene 

la formula di Crank-Nicholson.  

Una forma di questo tipo, si presta in maniera quasi naturale ad essere 

implementata attraverso programmi MatLab, come mostrato in Appendice C, 

inoltre pone interessanti possibilità di studio della stabilità della soluzione 

ottenuta con l’approssimazione alle differenze finite usando il metodo 

implicito, attraverso lo studio delle matrici, anche se al crescere degli  
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Fig 3. 7 
elementi, tali matrici possono diventare molto grandi e quindi richiedere tempi 

di calcolo eccessivi. 

 

3.2.4 Condizioni al contorno 

Finora abbiamo ottenuto le espressioni per i punti interni della griglia, 

comunque dobbiamo ancora analizzare col metodo delle differenze finite le 

condizioni al contorno . Consideriamo che normalmente ci sono due tipi di 

condizioni al contorno: 1) il problema di Dirichlet, dove u viene specificata 

sul contorno, e 2) il problema di Neumann, dove viene specificato il gradiente 

normale alla superficie, u
n
∂
∂

. Per il problema di Dirichlet, i valori che la 

funzione deve avere sul contorno sono specificati direttamente e nessuna 

formula speciale viene richiesta. Per il problema di Neumann, il modo più 

semplice per implementare le condizioni al contorno è di aggiungere dei nodi 

immaginari ai lati della griglia. Osservando la fig 3.7 vediamo che il contorno 

è alla linea j=NY. Assumendo di aggiungere un’altra riga in j=NY+1, la 

condizione al contorno in j=NY è : 

, 1 , 1

1 1

0 (i NY i NY

NY NY

O Y
n Y Y

2)
φ φφ + −

+ −

−∂
= = + ∆

∂ −
 

e per assicurarci che la condizione al contorno sia soddisfatta, definiamo: 

, 1 ,i NY i NY 1φ φ+ −≡  

Le equazioni sono poi risolte per YNY e quando necessitiamo di φ  in NY+1, 

semplicemente usiamo il valore in NY-1. 
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3.2.5 Analisi della stabilità 

L’analisi finora presentata per risolvere i problemi governati da equazioni 

differenziali appare decisamente semplice. In molti casi non riusciamo ad 

ottenere una soluzione. Frequentemente la ragione di ciò è da additare nella 

scelta di un algoritmo numerico intrinsecamente instabile. In questa sezione 

presentiamo uno degli approcci classici alla determinazione dei criteri di 

stabilità: l’analisi di stabilità di Von Neumann.  L’approccio di Von Neumann 

alla stabilità si basa sull’analisi di Fourier e quindi è generalmente limitata a 

PDE lineari e a coefficienti costanti6. 

Consideriamo l’equazione (3.19) : 
2

2

u u
t x

α∂ ∂
=

∂ ∂
 

ed esaminiamo la stabilità della rappresentazione esplicita  data 

dall’equazione (3.24) e qui riscritta come: 

(3.30) ( )2

( , ) ( , ) ( , ) 2 ( , ) ( ,u x t t u x t u x x t u x t u x x t
t x

)α+ ∆ −
= + ∆ − + − ∆

∆ ∆
 

Assumiamo che all’istante t=0, venga introdotto un errore della forma: 

(3.31) ( , ) ( ) j xu x t t e βψ=  

dove β  è una costante reale. 

Sostituendo la (3.31) nella (3.30) e risolvendo per ( )t tψ + ∆ : 

(3.32) 
{ }

{ }

( ) ( )
2

2

( ) ( ) ( ) 2

( ) ( ) ( ) 2

j x j x
j x x j x j x x

j x j x j x j x j x

t t e t e t e e e
t x

tt t e t e t e e e
x

β β
β β β

β β β β β

ψ ψ ψα

ψ ψ α ψ

+∆ −∆

∆ − ∆

+ ∆ −
= − +

∆ ∆
∆

+ ∆ = + − +
∆

 

notiamo che i termini j xe β  si cancellano, e l’equazione precedente può essere 

riscritta come: 

(3.33) 
( ) ( )2 2

2
2

( ) ( ) 1 2 2cos ( ) 1 2 1 cos

( ) ( ) 1 4 sin
2

t tt t t x t x
x x

t xt t t
x

ψ ψ α β ψ α β

βψ ψ α

∆ ∆⎡ ⎤ ⎡+ ∆ = + − + ∆ = − − ∆⎢ ⎥ ⎢∆ ∆⎣ ⎦ ⎣
∆ ∆⎡ ⎤+ ∆ = −⎢ ⎥∆⎣ ⎦

⎤
⎥⎦

                                                

 

 
6 Osserviamo che l’analisi di Von Neumann non include l’effetto dei contorni spaziali, che possono influire sulla 
stabilità effettiva.  
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definendo un fattore di amplificazione G, come rapporto di ( )t tψ + ∆  su ( )tψ , 

abbiamo: 

(3.34) 2
2

( ) 1 4 sin
( ) 2

t t t xG
t x

ψ α β
ψ
+ ∆ ∆⎡ ⎤= = −⎢ ⎥∆⎣ ⎦

∆ . 

La stabilità richiede che : 

1G <  

cosi che l’errore sia decrescente.  

Essendo β  arbitrario e osservando che il valore massimo del seno è uno, la 

condizione di stabilità diventa: 

(3.35) 21 4 1t
x

α ∆
− <

∆
 

e in definitiva questo significa che: 

(3.36) 2

1
2

tr
x

α ∆
= <

∆
 

Ciò pone le condizioni su et∆ x∆  perchè l’equazioni del modello siano stabili. 

Un analisi analoga della rappresentazione implicita ,eq.(3.26), dimostra che 

essa è incondizionatamente stabile: 

(3.37) 
2

2

( ) 1 1
( ) 1 4 sin

2

t tG
t xt

x

ψ
ψ α β

+ ∆
= =

∆ ∆⎡ ⎤+⎢ ⎥∆⎣ ⎦

≤  

e per l’arbitrarietà di β  possiamo porre 2sin 1
2
xβ ∆
=  per cui abbiamo: 

(3.38) 
2

( ) 1 <1     Sempre!
( ) 1 4

t tG
tt

x

ψ
ψ α

+ ∆
= =

∆⎡ ⎤+⎢ ⎥∆⎣ ⎦

 

Analogamente si ottiene la stabilità per lo schema generale della (3.29): 

(3.39) 
2

2

2
2

4 sin( ) 21 1
( ) 1 4 sin

2

t x
t t xG

t xt
x

α βψ
ψ α λ β

∆ ∆
+ ∆ ∆= = −

∆ ∆⎡ ⎤+⎢ ⎥∆⎣ ⎦

≤  
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osserviamo che per 0λ =  ritroviamo la condizione di stabilità vista prima per 

lo schema esplicito. Se poi poniamo 2sin 1
2
xβ ∆
= , abbiamo la condizione di 

stabilità: 

(3.40) 
21

2 4
x
t

λ
α

⎛ ⎞∆
≥ −⎜ ⎟∆⎝ ⎠

 

da cui risulta che sia il metodo completamente implicito, 1λ = , che quello di 

Crank-Nicholson, 0.5λ = , sono stabili. In pratica un qualsiasi valore di  λ  

nell’intervallo [0.5,1] ci garantisce la stabilità incondizionata7.  

Tuttavia noi, per lo studio della stabilità ci rifaremo alle osservazioni 

effettuate da Crandall che ha riassunto i suoi studi in un unico grafico  che 

racchiude la stabilità, la possibilità di oscillazione e l’errore di troncamento 

dell’equazione (3.19). Per quanto detto fino a questo punto sembra che il 

metodo implicito sia di gran lunga migliore del metodo esplicito, ma come 

vedremo il metodo implicito da  vita a notevoli problemi di convergenza verso 

la soluzione esatta. 

1/2

1

1/6 1/4 1/2 1

  λ

r

 nessun modo
 oscilla

stabile

 instabile

 λ=1-1/(4r)

λ=0.5(1-1/6r)

λ=0.5(1-1/2r)

errore di
 tronc.O[(∆x)4]

                                                 
7 Naturalmente, la stabilità da sola non ci garantisce che l’evoluzione del fenomeno fisico sia correttamente simulata, e 
il passo temporale dovrebbe essere scelto in modo da non eccedere i vincoli temporali caratteristici del fenomeno 
osservato. 
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3.3 Equazione della diffusione 

Applichiamo ora quanto ottenuto nel caso generale di un’equazione 

differenziale lineare del tipo parabolico all’equazione di nostro interesse, e 

cioè: 

(3.41) { }( ) ( )a
n D n n U n g
t

∂
= ∇ ⋅ ∇ − +

∂
 

(dove  abbiamo sottinteso la dipendenza dalle incognite ), con le 

seguenti condizioni al contorno (di Neumann) 

, , ,x y z t

(3.42) ( )a S S
D n n S n

∂ ∂
∇ ⋅ =)  

dove ( )aD n  è il coefficiente di diffusività ambipolare, e dove  è la 

velocità  di ricombinazione nel volume; in appendice al capitolo sono 

presentati i modelli usati per esprimere la loro dipendenza da n . Inoltre è nota 

la funzione, , di generazione dei portatori minoritari nelle coordinate 

spaziali.  

( )U n

( , , , )g x y z t

Allo scopo di approssimare la (3.39) con uno schema alle differenze finite 

osserviamo che: 

(3.43) { } 2
a a aD n D n D∇⋅ ∇ = ∇ +∇ ⋅∇n  

per cui: 

(3.44) ( ) ( ) ( )2
a a

n D n n D n n U n g
t

∂
= ∇ +∇ ⋅∇ − +

∂
 

 

3.3.1 Caso monodimensionale 

Iniziamo a risolvere col metodo delle differenze finite nel caso 

monodimensionale, estenderemo poi le considerazioni al caso bidimensionale. 

La nostra PDE diventa nel caso di una dimensione spaziale: 

(3.45) ( ) ( ) ( ) ( )
2

2 ( )a
a

D nn n nD n U n g x t
t x x x

δ
∂∂ ∂ ∂

= + ⋅ − +
∂ ∂ ∂ ∂
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x -
1=

x o
-∆

x

x o x -
1=

x o
+∆

x

...
to

t1=t0+∆x

...

nodo dove la concentrazione è nota per le condizioni iniziali

nodo immaginario necessario per trattare le condizioni al contorno di Neumann

nodo dove la concentrazione è incognita  

Fig 3. 8 

 
Ciò che faremo è di dividere la nostra lunghezza  in m incrementi spaziali 

uguali, ognuno di ampiezza 

d

d
m

 (griglia uniforme). Se, quindi, siamo 

interessati ad osservare la concentrazione dall’istante  a ot ft , allora possiamo 

dividere l’intervallo temporale in p  incrementi uguali, ognuno di ampiezza 

f ot t
p
− . Vedi figura 3.9. Al passo 1, conosciamo tutti i valori della funzione, n, 

all’istante , in quanto dati dalla condizione iniziale: ot

(3.46) 
2 2

0 2 2

Re( ) (1 )
1

d dx x
d

d

e eg x N R
R e

α α
α

αα

⎛ ⎞ ⎛ ⎞− + − − +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−

⎛ ⎞
+⎜ ⎟= −⎜ ⎟−⎜ ⎟

⎝ ⎠
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dove R è il coefficiente di riflessione delle superfici laterali, α  è il 

coefficiente di assorbimento ottico alla lunghezza d’onda dell’impulso laser8 

ed  è il numero di fotoni incidenti sulla superficie del campione per unità di 

area. Ai passi successivi tutto ciò che vogliamo è di ottenere 

0N

{ }( )1, kn x t + da 

{ }( , kn x t ) sui nodi interni e ( ) ( ), , ,o mn x t n x t sul contorno9. 

Discretizzazione 

Scriviamo le approssimazioni alle differenze finite per le derivate temporali e 

spaziali: 

(3.47) 
1

                    i
k k
i i

i

n n n
t t

+∂ −⎛ ⎞ ≈ ∀⎜ ⎟∂ ∆⎝ ⎠
 

(3.48) 

1 1

2
1 1

2 2

                   k 
2

2        k  

k k k
i i

i
k k k k

i i i

i

n n n
x x

n n n n
x x

+ −

− +

∂ −⎛ ⎞ ≈ ∀⎜ ⎟∂ ∆⎝ ⎠

⎛ ⎞∂ − +
≈ ∀⎜ ⎟∂ ∆⎝ ⎠

 

sostituendo nella (3.43)10

(3.49) 

11 1 1 1 1 1
1 11 1 1 1

2

1 1 1 1
2

2 
2

2(1 )
2

kk k k k k k k
k ki i i i i a i i
ai i

i

kk k k k k
k ki i i a i i
ai i

i

n n n n n D n nD U
t x x x

n n n D n nD U
x x x

λ

λ

++ + + + + +
+ +− + + −

− + + −

⎡ ⎤− − + ∂ −⎛ ⎞= +⎢ ⎥⎜ ⎟∆ ∆ ∂ ∆⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤− + ∂ −⎛ ⎞+ − + −⎢ ⎥⎜ ⎟∆ ∂ ∆⎝ ⎠⎢ ⎥⎣ ⎦

− +

 

e riordinando 

(3.50) 

11 1 1 1 1
1 1 1 1 1 1

2

1 1 1 1
2

2 
2

2(1 )
2

kk k k k k
k k k ki i i a i i
i i ai i

i

kk k k k k
k ki i i a i i
ai i

i

n n n D n nn n t D U
x x x

n n n D n nt D U
x x x

λ

λ

++ + + + +
+ + − + + −

− + + −

⎡ ⎤− + ∂ −⎛ ⎞= + ∆ + − +⎢ ⎥⎜ ⎟∆ ∂ ∆⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤− + ∂ −⎛ ⎞+∆ − + −⎢ ⎥⎜ ⎟∆ ∂ ∆⎝ ⎠⎢ ⎥⎣ ⎦

1+

                                                

 

 
8 Considereremo i casi di alto coefficiente di assorbimento, 

1292cmα −= , corrispondente ad una lunghezza d’onda di 

0.904 mλ µ=  che è emesso da un laser di GaAs; ed il caso di basso coefficiente di assorbimento, 
110cmα −=  che 

corrisponde ad una lunghezza d’onda di 1.06 mλ µ= di un laser Nd:Yag. 
9 D’ora in poi scriveremo al posto di  così che: 

k
in ,( i kn x t )

i sottoscritto designa l’incremento spaziale 
k soprascritto designa l’incremento temporale 

10 Osserviamo che per  0λ =  riotteniamo il metodo esplicito e per  1λ =  il metodo implicito; a 
1
2

λ =  corrisponde il metodo di Crank-

Nicholson. 
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posto 2 ,
2

a
x x

tD t DC B a

x x x
∆ ∆

= =
∆ ∆

∂
∂

  e raggruppando,ponendo tutte le incognite 

(all’istante k+1) a destra e quelle (all’istante k) note a sinistra : 

(3.51) 
( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1 1 1
1 1

1
1 1

1 2

1 1 2 (1 ) (1 ) (1 )

k k k k k k k k
xi xi i xi i xi xi i

k k k k k k k k k
xi xi i xi i xi xi i i i

C B n C n C B n

C B n C n C B n t U t U

λ λ λ

λ λ λ λ

+ + + + + + + +
− +

+
− +

− − + + − + =

⎡ ⎤− − + − − + − + −∆ −∆ −⎣ ⎦
kλ
 

se definiamo  

[ ]
(1 2 ), ( ) , ( )

1 2 (1 ) , ( )(1 ), ( )(1 )
diag x lx x x hx x x

diag x lx x x hx x x

J C J C B J C B

R C R C B R C B

λ λ λ

λ λ λ

= + = − + = − +

= − − = − − = + −
 

possiamo riscrivere l’equazione (3.48) come 

(3.52) 1 1 11 1 1 1
1 1 1 1 (1 )k k k k k kk k k k k k k

lx i diag i hx i lx i diag i hx i i ii i i ii i
kJ n J n J n R n R n R n t U t Uλ λ+ + ++ + + +

− + − ++ + = + + −∆ −∆ −  

Queste equazioni valgono per tutti i nodi interni.11

Per ogni i, la (3.52) ci dà un sistema di equazioni algebriche lineari; che 

possiamo risolvere con le regole dell’algebra lineare. Infatti, il sistema dato 

dalle equazioni (3.52) , per ogni i, può essere riscritto come: 

(3.53)  1kJn R+ =

la cui soluzione per  è: 0J ≠

(3.54)  1 1kn J+ −= R

La matrice J è chiamata anche jacobiano12, e il vettore R residuo. 

Condizioni al contorno 

Considereremo ora le condizioni al contorno (tipo Neumann) nella loro forma 

più generale monodimensionale: 

(3.55) a
nD S
x
∂

= ±
∂

n

                                                

 

utilizzando l’approssimazione alle differenze al centro, per la derivata spaziale 

abbiamo all’istante k+1: 

 
11 Quando abbiamo condizioni al contorno di Dirichlet, un nodo interno è un qualsiasi nodo tranne quelli sul contorno 
stesso. Quando abbiamo condizioni al contorno di Neumann, siamo forzati ad aggiungere un nodo immaginario ai lati 
estremi; così un nodo interno è un qualsiasi nodo tranne quei due nodi immaginari (e quindi in questo caso dobbiamo 
includere nei nodi interni anche i nodi che si trovano sul contorno nel caso di condizioni di Dirichlet). 
12 Osserviamo che per m intervalli spaziali, ci sono m+1 nodi. Per condizioni al contorno di Dirichlet, se ci sono m+1 
nodi allora ci sono m-1 nodi interni e quindi m-1 incognite. La matrice J è una matrice di dimensioni m-1 x m-1. Per 
condizioni al contorno di Neumann, ci sono m+3 nodi spaziali (a causa dei nodi immaginari ai lati), e quindi m+3 
incognite. La matrice J ha dimensioni m+3 x m+3. 
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(3.56) 
1 1

1 1 11 1

2

k k
k k ki i

a ii
n nD S

x

+ +
+

in+ ++ −⎛ ⎞−
= ±⎜ ⎟∆⎝ ⎠

 

riordiniamo, come fatto per la PDE, mettendo tutte le incognite all’istante k+1 

sul lato sinistro e il resto sul lato destro 

(3.57) 
1 1

1 1 1 1
1 1 0

2 2

k k
k k k ka ai i
i i i i

D D
n S n n

x x

+ +
+ + + +
− +

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

m =  

Quest’equazione verrà usata per tutti i nodi immaginari creati per trattare le 

condizioni al contorno di Neumann. 

 

3.3.2 Caso bidimensionale 

L’estensione al caso bidimensionale è chiara. La PDE parabolica diventa nel 

caso di due dimensioni spaziali 

(3.58) 
2 2

2 2

( ) ( )( ) ( ) ( , ) ( )a a
a

n n n D n n D n nD n U n g x y t
t x y x x y y

δ
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + − +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦
 

Ciò che faremo è di dividere la nostra dimensione spaziale x in  incrementi, 

ognuno di ampiezza 

xm

x

x

L
m

. In modo simile, divideremo la nostra dimensione 

spaziale y in  incrementi, di ampiezza ym y

y

L
m

. Se, poi, siamo interessati ad 

osservare la concentrazione dall’istante   a ot ft , allora possiamo dividere 

l’intervallo temporale in p incrementi uguali, ognuno di ampiezza f ot t
p
− .Vedi 

fig.3.9. Al passo 1, conosciamo tutti i valori della funzione, n, all’istante , 

perchè questi sono dati dalla condizione iniziale: 

ot

(3.59) 
2 2

0 2 2

Re( , ) (1 ) ( )
1

d dx x
d

d

e eg x y N R y
R e

α α
α

αα δ

⎛ ⎞ ⎛ ⎞− + − − +⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−

⎧ ⎫
+⎪ ⎪= −⎨ ⎬−⎪ ⎪

⎩ ⎭
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Fig 3. 9 

In generale quello che vogliamo è ottenere { }( )1, , kn x y t +  da { }( ), , kn x y t  e 

{ }( ), ,o on x y t  e { }( ), ,m mn x y t .13

Discretizzazione 

Scriviamo le approssimazioni alle differenze finite per le derivate temporali e 

spaziali: 

(3.60) 
1

, ,

,

                    i,j
k k
i j i j

i j

n nn
t t

+ −∂⎛ ⎞ ≈ ∀⎜ ⎟∂ ∆⎝ ⎠
 

(3.61) 

1, 1,

,

2
1, , 1,

2 2
,

                  k,j 
2

2
       k,j  

k k k
i j i j

i j

k k k k
i j i j i j

i j

n nn
x x

n n nn
x x

+ −

− +

−∂⎛ ⎞ ≈ ∀⎜ ⎟∂ ∆⎝ ⎠

− +⎛ ⎞∂
≈ ∀⎜ ⎟∂ ∆⎝ ⎠

 

(3.62) 

, 1 , 1

,

2
, 1 , , 1

2 2
,

                  k,i 
2

2
       k,i  

k k k
i j i j

i j

k k k k
i j i j i j

i j

n nn
y y

n n nn
y y

+ −

− +

−⎛ ⎞∂
≈ ∀⎜ ⎟∂ ∆⎝ ⎠

− +⎛ ⎞∂
≈ ∀⎜ ⎟∂ ∆⎝ ⎠

 

sostituendo nella (3.54) 
                                                 
13 D’ora in poi scriveremo al posto di  così che: ,

k
i jn ( , , )i j kn x y t

i sottoscritto designa l’incremento spaziale lungo la coordinata x 
j sottoscritto designa l’incremento spaziale lungo la coordinata y 
k soprascritto designa l’incremento temporale 
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(3.63) 

111 1 1 1 1 1 1 1 1 1
1 1, , 1, , 1 , , 1 1, 1, , 1 , 11 1

, , ,, 2 2
, ,

2 2
2 2

(1

kkk k k k k k k k k k
k i j i j i j i j i j i j i j i j i j i jk k ka a

i j i j a i ji j
i j i j

n n n n n n n n n nD Dn n t D U
x y x x y y

t

λ

λ

+++ + + + + + + + + +
+ + − + − + − + −+ +

⎧ ⎫⎡ ⎤− + − + − −⎛ ⎞∂ ∂⎪ ⎪⎛ ⎞= +∆ + + + − +⎨ ⎬⎢ ⎥ ⎜ ⎟ ⎜ ⎟∆ ∆ ∂ ∆ ∂ ∆⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

+∆ − 1, , 1, , 1 , , 1 1, 1, , 1 , 1
,, 2 2

, ,

2 2
)

2 2

kkk k k k k k k k k k
k i j i j i j i j i j i j i j i j i j i j ka a

a i ji j
i j i j

n n n n n n n n n nD DD U
x y x x y y

+ − + − + − + −
⎧ ⎫⎡ ⎤− + − + − −⎛ ⎞∂ ∂⎪ ⎪⎛ ⎞+ + + −⎨ ⎬⎢ ⎥ ⎜ ⎟ ⎜ ⎟∆ ∆ ∂ ∆ ∂ ∆⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

 

posto 2 2, , ,
2 2

a a a
x x y y

tD t D tD t DC B C B a

x x x y y y
∆ ∆ ∂ ∆ ∆

= = = =
∆ ∆ ∂ ∆ ∆

∂
∂

 e raggruppando, ponendo 

tutte le incognite (all’istante k+1) a destra e quelle (all’istante k) note a 

sinistra: 

(3.64) 
( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
, , 1, , , , 1 , , , , , 1, , , , 1

, , 1, , , , 1

1 2 2

(1 ) (1 ) 1 2

k k k k k k k k k k k k k k k
xi j xi j i j yi j yi j i j xi j yi j i j xi j xi j i j yi j yi j i j

k k k k k k
xi j xi j i j yi j yi j i j

C B n C B n C C n C B n C B n

C B n C B n

λ λ λ λ λ λ

λ λ

+ + + + + + + + + + + + + + +
− − +

− −

− − − − + + + − + − + =

= − − + − − + − ( )
( )

1 1
, , , , ,

1
, , , 1 , ,

(1 ) 2 (1 ) (1 )

(1 ) (1 )

k k k k k
xi j yi j i j xi j xi j i j

k k k k k
yi j yi j i j i j i j

C C n C B n

C B n t U t U

λ λ λ

λ λ λ

+ +
+

+
+

⎡ ⎤

+

1,
k− − − + + − +⎣ ⎦

+ + − −∆ −∆ −

 

se definiamo  

( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

1 2 2 , , ,

, , 1 2 (1 ) 2 (1 ) ,

(1 ), (1 ), (1 ), (1 )

diag x y hx x x hy y y

lx x x ly y y diag x y

hx x x hy y y lx x x ly y y

J C C J C B J C B

J C B J C B R C C

R C B R C B R C B R C B

λ λ λ λ

λ λ λ λ

λ λ λ

= + + = − + = − +

⎡ ⎤= − − = − − = − − + −⎣ ⎦
= + − = + − = − − = − −λ

k

 

possiamo riscrivere l’equazione (3.59) come 

(3.65) 
1 1 1 1 11 1 1 1 1

, 1 1, , 1, , 1, ,, , ,

1
, 1 1, , 1, , 1 , ,, ,, , ,

(1 )

k k k k kk k k k k
ly i j lx i j diag i j hx i j hy i ji j i ji j i j i j

k k k k kk k k k k k
ly i j lx i j diag i j hx i j hy i j i j i ji j i ji j i j i j

J n J n J n J n J n

R n R n R n R n R n t U t Uλ λ

+ + + + ++ + + + +
− − + +

+
− − + +

+ + + + =

= + + + + −∆ −∆ −
 

Queste equazioni valgono per tutti i nodi interni alla griglia.14

Ancora abbiamo un sistema di equazioni algebriche lineari, la cui soluzione in 

termini matriciali può essere scritta, per  0J ≠  come: 

(3.66)  1 1kn J+ −= R

                                                

dove la matrice J è lo Jacobiano,15 e il vettore R è il residuo. 

 
14 Vedi nota 5. 
15 Se ci sono  intervalli spaziali nella direzione x, ci sono xm 1xm +  nodi nella direzione x. Se ci sono  intervalli 

spaziali nella direzione y, ci sono  nodi nella direzione y. Per condizioni al contorno di tipo Neumann , se ci sono 

 nodi nella griglia allora ci saranno 

ym
1ym +

( 1)(x ym m+ +1) 3)( 3)(u x ym m m= + +  incognite. La matrice J è una matrice di 

dimensioni . u um m×
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Condizioni al contorno 

Considereremo ora le condizioni al contorno (tipo Neumann) nella loro forma 

più generale bidimensionale lungo la direzione x: 

(3.67) a
nD S
x
∂

= ±
∂

n  

utilizzando l’approssimazione alle differenze al centro, per la derivata spaziale 

abbiamo all’istante k+1: 

(3.68) 
1 1

1 1, 1, 1 1
, ,, 2

k k
k i j i j k k

a ii j

n n
D S

x

+ +
+ + −

j i jn+ +⎛ ⎞−
= ±⎜ ⎟∆⎝ ⎠

 

riordiniamo, come fatto per la PDE, mettendo tutte le incognite all’istante k+1 

sul lato sinistro e il resto sul lato destro 

(3.69) 
1 1

, ,1 1 1 1
1, , , 1, 0

2 2

k k
a ai j i jk k k k

i j i j i j i j

D D
n S n n

x x

+ +
+ + + +
− +

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

m =  

Quest’equazione verrà usata per tutti i nodi immaginari creati per trattare le 

condizioni al contorno di Neumann. 
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Appendice al Capitolo 3 

A.3.1 Diffusività ambipolare 

Al fine di poter lavorare anche ad alti livelli di iniezione in luogo del 

coefficiente di diffusività ricavato dall’equazione di Einstein, si è usato la 

diffusività ambipolare  [25] data dalla seguente espressione: aD

(3.70) ( )n p
a

n p

D D n p
D

D n D p
+

=
+

 

che, a bassi livelli di iniezione si riduce alla diffusività dei portatori minoritari 

 per un semiconduttore di tipo p oppure  per un semiconduttore di tipo n. nD pD

Inoltre come è possibile notare osservando l’equazione (3.41), si è trascurato 

il contributo del campo elettrico dovuto alla differenza di mobilità tra elettroni 

e lacune. Si può dimostrare che data la densità di corrente per elettroni e 

lacune, (per semplicità ci limiteremo alla trattazione nel caso 

monodimensionale): 

(3.71) 
p p p p p

n n n n n

pJ q pE qD E qD p
x

nJ q nE qD E qD n
x

µ σ

µ σ

∂⎧ = − = −⎪⎪ ∂
⎨ ∂⎪ = + = +
⎪ ∂⎩

g

g
 

e considerando l’equazione di continuità per elettroni e lacune, posto il 

termine di generazione uguale a zero, abbiamo: 

(3.72) 

1

1

p

n p
n

Jp U
t q
n JU
t q

δ δ
x

x

∂⎧∂
= − −⎪ ∂ ∂⎪≅ ⇒ ⎨

∂ ∂⎪ = − +
⎪ ∂ ∂⎩

 

se ora eseguiamo la derivata spaziale dell’equazione (3.71): 

(3.73) 
2 2

2 2

p
p p p

n
n n n

J
E q p E qD pn p n p x

x x x x J E q p E qD p
x

σ µ

σ µ

∂⎧
= + −⎪∂ ∂ ∂ ∂ ⎪ ∂≅ ⇒ ≅ ⇒ ⎨∂ ∂ ∂ ∂ ∂⎪ = + +

⎪ ∂⎩

g g

g g

gg

gg
 

e sostituiamo il valore di J
x

∂
∂

 nell’equazione (3.72) otteniamo: 
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(3.74) 
{ }
{ }

1 1

1 1

p
p p p

n
n n n

Jp U U E q p E q
t q x q
p JU U E q p E qD
t q x q

σ µ

σ µ

∂⎧∂
= − − = − − + −⎪ ∂ ∂⎪

⎨
∂ ∂⎪ = − + = − + + +

⎪ ∂ ∂⎩

g g

g g g

D p

p

gg

g
 

Moltiplichiamo ambo i membri dell’espressione (3.74) per, rispettivamente, 

nσ  e pσ  ottenendo: 

(3.75) 
{ }
{ }

1

1

n n n p n p n p

p p n p p n p

p U E q p E qD
t q
p U E q p E qD
t q

σ σ σ σ σ µ σ

σ σ σ σ σ µ σ

∂⎧ = − − + −⎪ ∂⎪
⎨ ∂⎪ = − + + +
⎪ ∂⎩

g g

g g

n

p

p

gg

gg
 

(3.76) { }1
n p p n n p p n

p U q p E q p E qD p qD
t q

σ σ σ µ σ µ σ σ∂
= − + − + + + =

∂

g g gg gg
p  

dove n pσ σ σ= + , 

(3.77) ( )1
n p p n n p p n

p pU E E qp D
q p n

σ σ σ σ σ σ σ
⎧ ⎫⎪ ⎪= − + − + + + =⎨ ⎬
⎪ ⎪⎩ ⎭

g g
gg

D  

(3.78) ( )1 1 1
n p n p p nU p E qp D D

q p n
σ σ σ σ σ

⎧ ⎫⎛ ⎞
= − + − + + + =⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭

g gg
 

(3.79) ( ) ({ )}n p p n n p p nU p E p D Dσ σ µ σ µ σ σ= − + − + + + =
g gg

 

(3.80) n p p n n p p nD Dp U p E p
t

σ µ σ µ σ σ
σ σ
− +⎧ ⎫⎡ ⎤ ⎛∂

= − − −⎨ ⎬⎜ ⎟⎢ ⎥∂ ⎣ ⎦ ⎝⎩ ⎭

g gg ⎞

⎠
 

Arrivati a questo punto se scriviamo: 

(3.81) ( )n p p n D
n p n p

n p n

n p N
n p n p

σ µ σ µ
µ µ µ µ

pσ µ µ µ µ
− −

= ≅
+ +

 

(3.82) ( )n p p n n p p n n p
a

n p n p

D D nD pD D D n p
D

n p D n D p
σ σ µ µ

σ µ µ
+ + +

= =
+ +

≡  

Inoltre se esprimiamo il campo elettrico E nel seguente modo: 

(3.83) ( )0p p p n p
n p n p

n p
n n n

J E qD p D DpJ J J E q D D p E q
xJ E qD n

σ
σ

σ σσ

⎧ = − −∂⎪ ⇒ = = + = + − ⇒ = −⎨ ∂ +⎪ = +⎩

g
g

g
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trascurando il termine 
n p

J
σ σ

−
+

, possiamo scrivere: 

(3.84) 
2

n p n p D
a

n p n p

D D Np pU q D p
t x n p

µ µ
σ σ µ µ

−∂ ∂⎛ ⎞= − + +⎜ ⎟∂ ∂ + +⎝ ⎠

gg
 

Nel caso statico, cioè quando 0p
t

∂
=

∂
, considerando prima il caso di bassi 

livelli di iniezione, trascuriamo il secondo termine a destra nell’equazione 

(3.84), e ponendo , otteniamo: aD D= p

(3.85) 
2

2

( )0 ( ) (0) p

x
L

p
p p

p d p d p pD p x p e
dx dx Lτ

−∆ ∆ ∆ ∆
= − + ⇒ ∆ = ∆ ⇒ = −

x  

a questo punto il terzo termine a destra dell’equazione (3.84) vale 
2

2p p
p

2

p pD D
L x
∆ ∂

=
∂

, mentre il secondo termine vale 

2

2

1n
p

pn p n p D
p 2p

p n D D n p n D p

D
DD D Np pq D

L q N N L N L

µ
µ µ

µ µ µ

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎛ ⎞ −∆ ∆ ∆⎢ ⎥⎝ ⎠=⎜ ⎟ ⎢ ⎥⎜ ⎟

⎝ ⎠ ⎢ ⎥
⎢ ⎥⎣ ⎦

=p pD ∆ , visto che risulta 

1
D

p
N
∆ = . 

Consideriamo ora il caso di alti livelli di iniezione, per cui vale che  

Dn p N≈ ?  ed in tal caso si ha: 

(3.86) 2
0  con ( ) (0)  dove a

x
n p L

a a a
a n p

D Dp D p D p x p e L D
D D

τ
τ

−∆
= − + = ⇒ ∆ = ∆ =

+

gg

a a  

Analogamente a quanto fatto in precedenza possiamo osservare che il terzo 

termine a destra dell’equazione (3.84) vale 
2

2a a
a

pD D
L x 2

p∆ ∂
=

∂
, mentre il secondo 

termine della stessa equazione vale: 

 
2

2 2( ) ( ) ( )
n p n p D n p n p D

a a
a n p n p a a n p

D D N D D
2
a

p p Nq D pD
L q p p L D p

µ µ µ µ
µ µ µ µ µ µ

⎡ ⎤− −⎛ ⎞∆ ∆
= ⎢ ⎥⎜ ⎟ + ∆ + ∆ + ∆⎝ ⎠ ⎣ ⎦

=
L
∆  

Alla luce di quanto dimostrato si vede che l’approssimazione di considerare il 

campo elettrico trascurabile nell’equazione (3.41) è lecita. 

 - 64 -



A.3.2 Velocità di ricombinazione netta 

Il simulatore per quanto riguarda la velocità di ricombinazione è in grado di 

supportare una relazione del tipo: 

(3.87)  SRH Auger dirU U U U= + +

dove i termini presenti nell’equazione (3.88) sono dati da: 

(3.88) 
2

exp exp

ie
SRH

p ie n ie

pn nU
Etrap Etrapn n p n

kT kT
τ τ

−
=

−⎡ ⎤ ⎡⎛ ⎞ ⎛+ + +⎜ ⎟ ⎜⎢ ⎥ ⎢⎝ ⎠ ⎝⎣ ⎦ ⎣

⎤⎞
⎟⎥⎠⎦

 

(3.89) 2 2 2 2( ) ( )Auger ie ieU Augn pn nn Augp np pn= − + −  

(3.90)  2( )dir direct ieU C np n= −

I listati MatLab che implementano la diffusività ambipolare, la mobilità 

analitica e la velocità di ricombinazione netta descritti sopra sono riportati in 

appendice B . 
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Capitolo 4 

 

Confronto a bassi ed alti livelli di iniezione 

 
4.1 Introduzione 

In questo capitolo sarà effettuato il confronto tra il simulatore realizzato 

attraverso la soluzione numerica dell’equazione della diffusione con il metodo 

delle differenze finite, ed il modello analitico per il caso dei bassi livelli di 

iniezione ed un simulatore commerciale molto affermato quale il simulatore 

MEDICI per il caso di alti livelli di iniezione. I confronti saranno effettuati sia 

per il caso monodimensionale che per quello bidimensionale. 

 

4.2 Confronto a bassi livelli di iniezione tra il modello di Ling e Ajmera e 

      la rappresentazione alle differenze finite 

4.2.1 Simulazione 1D  

In questo paragrafo riportiamo una serie di confronti tra i risultati ottenuti con 

il modello di Ling e Ajmera nel caso monodimensionale visto nel capitolo 2 e 

quello ottenuto attraverso il metodo numerico delle differenze finite 1D visto 

nel capitolo precedente. Le simulazioni riportate sono effettuate in regimi di 

bassi livelli di iniezione e su campioni di diverso spessore, e precisamente si è 

considerato campioni di celle solari sottili (200 µm), normali (1 mm) e spesse 

(3 mm), facendo riferimento allo spessore delle celle solari che normalmente è 

possibile trovare in commercio. Si sono considerati inoltre sia campioni di 

tipo p che di tipo n ed infine abbiamo considerato impulsi laser di diversa 

lunghezza d’onda. Nelle simulazioni riportate in questo paragrafo si è indicato 

il risultato ottenuto con il metodo delle differenze finite con una curva a tratto 

continuo, mentre il risultato ottenuto con il modello di Ling e Ajmera è 
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indicato con dei cerchi. Per le stesse simulazioni si sono considerati istanti di 

tempo diversi, presi con passo di 5µs, in modo da considerare lo stesso 

processo al trascorrere del tempo. Si riporta inoltre il valore di , densità 

media dei portatori in eccesso di cui si è detto nel capitolo 2. Tutti i grafici 

sono in scala semilogaritmica, salvo avviso contrario. 

( )avN t

 

Di seguito si riportano le tabelle contenenti il resoconto di tutte le simulazioni 

eseguite, ed i relativi grafici. 

 

Tabella 1(α=10) 

Simula 10N55d02 
Type N 

 
m^-3 

Navg=1e13cm^-3 
/s 

S2=5000cm/s 

Type N 
 

m^-3 
Navg=1e13cm^-3 

/s 
S2=000cm/s 

Type P 

m^-3 
Navg=1e13cm^-3 

/s 
S2=5000cm/s 

Type P 

m^-3 
Navg=1e13cm^-3 

/s 
S2=000cm/s 

 

d=200µm
N=1e16c

S1=5000cm

α=10cm^-1 
τb=500µs 

Simula10N50d02 

d=200µm
N=1e16c

S1=5000cm

α=10cm^-1 
τb=500µs 

Simula 10P55d02 

d=200µm 
N=1e16c

S1=5000cm

α=10cm^-1 
τb=500µs 

Simula 10P50d02 

d=200µm 
N=1e16c

S1=5000cm

α=10cm^-1 
τb=500µs 

Simula 10N55d1 

d=1mm 

^-3 
S1=5000cm/s 

α=10cm^-1 

Simula 10N50d1 
T
d=1mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S
α=10cm^-1 
τ

Simula 10P55d1 
T
d=1mm 
N=1e16cm^-3 
N -3 
S1=5000cm/s 
S  
α=10cm^-1 
τ

Simula 10P50d1 

d=1mm 

^-3 
S1=5000cm/s 

α=10cm^-1 

Type N 

N=1e16cm^-3 
Navg=1e13cm

S2=5000cm/s 

τb=500µs 

ype N 

2=000cm/s 

b=500µs 

ype P 

avg=1e13cm^

2=5000cm/s

b=500µs 

Type P 

N=1e16cm^-3 
Navg=1e13cm

S2=000cm/s 

τb=500µs 

Simula 10N55d3 
Type N 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=10cm^-1 
τb=500µs 

Simula 10N50d3 
Type N 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=10cm^-1 
τb=500µs 

Simula 10P55d3 
Type P 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=10cm^-1 
τb=500µs 

imula 10P50d3 
Type P 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=10cm^-1 
τb=500µs 

S

 

 - 67 -



 

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01

10
13

x[cm]

p
(x

,t
)[

lo
g

]

Simula 10N55d02

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
13

t[sec]

N
a

v
(t

)[
lo

g
]
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−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01

10
13

x[cm]

p
(x

,t
)[

lo
g

]

Simula 10N50d02

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
13

t[sec]

N
a

v
(t

)[
lo

g
]
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−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01

10
13

x[cm]

n
(x

,t
)[

lo
g
]

SImula 10P55d02

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
13

t[sec]

N
a
v
(t

)[
lo

g
]
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−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01

10
13

x[cm]

n
(x

,t
)[

lo
g
]

Simula 10P50d02

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
13

t[sec]

N
a

v
(t
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lo

g
]
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−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

10
13

x[cm]

p
(x

,t
)[

lo
g

]
Simula 10N55d1

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
13

t[sec]

N
a

v
(t

)[
lo

g
]
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−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

10
13

x[cm]

p
(x

,t
)[

lo
g
]

Simula 10N50d1

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
13
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N
a
v
(t

)[
lo

g
]
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−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

10
13

x[cm]

n
(x

,t
)[

lo
g
]

Simula 10P55d1

0 0.5 1 1.5 2 2.5 3

x 10
−6

10
13

t[sec]

N
a
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(t
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lo

g
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−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

10
13

x[cm]

n
(x

,t
)[

lo
g
]

Simula 10P50d1

0 0.5 1 1.5 2 2.5 3

x 10
−6
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13
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N
a

v
(t

)[
lo

g
]
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−0.1 −0.05 0 0.05 0.1 0.15

10
12

10
13

x[cm]

p
(x

,t
)[

lo
g

]
Simula 10N55d3
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a
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lo

g
]
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10
13
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lo
g

]
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lo

g
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13
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n
(x

,t
)[

lo
g

]
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lo

g
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−0.1 −0.05 0 0.05 0.1 0.15

10
13
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n
(x

,t
)[

lo
g

]
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N
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v
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)[
lo

g
]
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Tabella 2(α=292) 

 
Simula 292N55d02 
Type N 
d=200µm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=292cm^-1 
τb=500µs 

Simula292N50d02 
Type N 
d=200µm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292P55d02 
Type P 
d=200µm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=292cm^-1 
τb=500µs 

Simula292P50d02 
Type P 
d=200µm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=292cm^-1 
τb=500µs 
 

Simula 292N55d1 
Type N 
d=1mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292N50d1 
Type N 
d=1mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292P55d1 
Type P 
d=1mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292P50d1 
Type P 
d=1mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292N55d3 
Type N 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292N50d3 
Type N 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292P55d3 
Type P 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=292cm^-1 
τb=500µs 

Simula 292P50d3 
Type P 
d=3mm 
N=1e16cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=292cm^-1 
τb=500µs 
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Simula 292N55d02

−0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.00−0.01 8 0.01
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g
]

0 0.5 1 1.5 2 2.5 3
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N
a

v
(t

)[
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g
]
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4.2.2 Simulazione 2D  

In questo paragrafo riportiamo una serie di confronti tra i risultati ottenuti con 

il modello di Ling e Ajmera nel caso bidimensionale visto nel capitolo 2 e 

quello ottenuto attraverso il metodo numerico delle differenze finite 2D visto 

nel capitolo precedente. Le simulazioni riportate sono effettuate in regimi di 

bassi livelli di iniezione e su un campione di tipo P di dimensioni (d=0.525cm, 

h=1cm). Si sono considerati inoltre impulsi laser di diversa lunghezza d’onda. 

Nelle simulazioni riportate in questo paragrafo si è indicato il risultato 

ottenuto con il metodo delle differenze finite con una curva a tratto continuo, 

mentre il risultato ottenuto con il modello di Ling e Ajmera è indicato con dei 

cerchi. Per le stesse simulazioni si sono considerati istanti di tempo diversi, 

presi con passo di 5µs, in modo da considerare lo stesso processo al 

trascorrere del tempo. Nei grafici per comodità di visualizzazione, si riportano 

solo i valori di ( )avN t , densità media dei portatori in eccesso su tutto il 

dominio bidimensionale e ( , )avN x t , densità media lungo x . Tutti i grafici sono 

in scala semilogaritmica, salvo avviso contrario. 
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Di seguito si riportano le tabelle contenenti il resoconto di tutte le simulazioni 

eseguite, ed i relativi grafici. 

 

 

Tabella 3 
Simula 10P552D 
Type P 
d=525µm 
h=10000µm 
N=3e15cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=10cm^-1 
τb=300µs  

Simula 10P502D 
Type P 
d=525µm 
h=10000µm 
N=3e15cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=10cm^-1 
τb=300µs 

Simula 292P552D 
Type P 
d=525µm 
h=10000µm 
N=3e15cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=292cm^-1 
τb=300µs 

Simula 292P502D 
Type P 
d=525µm 
h=10000µm 
N=3e15cm^-3 
Navg=1e13cm^-3 
S1=5000cm/s 
S2=000cm/s 
α=292cm^-1 
τb=300µs 
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4.3 Confronto con MEDICI ad alti livelli di iniezione 

.3.1 Simulazione 1D 

a simulazione che è stata effettuata per testare la validità del simulatore 

alizzato ad alti livelli di iniezione, è stata eseguita su un campione dalle 

eguenti caratteristiche: 

• τn0 =300 µs, τp0 =30µs; 

• coefficiente di assorbimento α=10 cm-1; 

• densità media Navg=1e15; 

• velocità di ricombinazione superficiale S1 = S2=5000 cm/s; 

• coefficienti Auger Cn=Cp=0; 

• Intervallo temporale osservato: [0,1ms];      

La simulazione è effettuata su un campione dalle caratteristiche appena 

descritte, su cui impatta un impulso laser del tipo N0*δ(t-t0), con t0=1e-12s, su 

un’opportuna interfaccia. Di seguito è riportato il confronto tra l’andamento 

delle lacune, p(x, t0), in cui si è indicato il risultato di MEDICI con dei cerchi, 

ed il risultato del simulatore numerico con una curva a tratto pieno, ed inoltre 

è riportato l’andamento di 

4

L

re

s

• campione di tipo n/tipo p; 

• spessore d=5000 µm; 

• drogaggio del campione pari a 2e12 cm-3; 

2

2

( ) ( , )
d

dp t p x t dx−= ∫  in cui la curva a tratto pieno è il 

risultato del simulatore numerico descritto al capitolo precedente. I grafici 

sono tutti in scala semilogaritmica. Per quanto riguarda i listati Matlab 

utilizzati per eseguire la suddetta simulazione, sono quelli riportati in 

appendice C, nel caso di soluzione dell’equazione della diffusione con metodo 

implicito, ma con parametro R, e cioè il coefficiente che tiene in conto le 

riflessioni multiple che si hanno sulle interfacce del campione di silicio, 

uguale a zero, in quanto MEDICI non permette di considerare il caso in cui ci 
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sia riflessione. Un’altra modifica apportata al simulatore è quella che permette 

i considerare la condizione iniziale, che MEDICI impone essere: 

condizione_iniziale= 0
alpha xN e

d
− ⋅  

fine sono stati modificati i seguenti parametri: 

 Nsrhn=4.14e16; 

0cm^-1 
τno=300µs 
τp0=30µs 

In

•

• Nsrhp=1e16; 

• Augn=0; 

• Augp=0; 

• Cdirect=1e-15; 

 

 

Di seguito si riportano le tabelle contenenti il resoconto di tutte le simulazioni 

eseguite, ed i relativi grafici. 

 

Tabella4 
Med10N 
Type N 
d=5000µm 
N=2e12cm^-3 
Navg=1e15cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=10cm^-1 
τno=300µs 
τp0=30µs 

Med10P 
Type P 
d=5000µm 
N=2e12cm^-3 
Navg=1e15cm^-3 
S1=5000cm/s 
S2=5000cm/s 
α=1
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4.4     Conclusioni 

 è possibile osservare, e cioè dai confronti effettuati tra il simulatore 

realizzato attraverso la soluzione numerica dell’equazione della diffusione ed 

il simulatore MEDICI, si può concludere che c’è un sostanziale buon accordo 

a i due.  Per cui possiamo senz’altro dire che il simulatore realizzato è 

ttendibile sia per bassi livelli di iniezione che per alti livelli di iniezione, e 

ioè abbiamo raggiunto lo scopo propostoci all’inizio di questo lavoro di tesi. 

oltre data la sua semplicità è senza dubbio più veloce di un simulatore 

general purpose” quale è il simulatore MEDICI, per cui l’estrazione dei 

arametri di interesse risulta certamente più semplice e veloce. Un’altra 

rerogativa dell’utilizzo di tale simulatore e  della relativa procedura di 

strazione dei parametri, è che si può prescindere dai  parametri stessi che è 

necessario  estrarre, infatti come rima i parametri estratti possono 

essere tutti quelli da cui dipende il processo, ad esempio tra le prime estrazioni 

effettuate c’è stato proprio il valore di Navg in modo da essere sicuri della 

quantità di drogante iniettato. Si può inoltre osservare  che la semplicità  di 

tale simulatore lo rende anche molto elastico e flessibile, infatti è davvero 

semplice modificarlo in modo da mettere in risalto un aspetto anziché un altro 

del processo di ricombinazione ad esempio, nelle ultime simulazioni eseguite 

la velocità di ricombinazione è stata modificata aggiungendo anche la 

componente di velocità di ricombinazione dovuta alla ricombinazione diretta 

che inizialmente era stata non considerata dato che, per livelli di iniezione 

bassi e medi, il suo peso è senza dubbio trascurabile essendo il silicio un 

semiconduttore indiretto, ma data la scarsità di teorie disponibili per quanto 

riguarda gli alti livelli di iniezione  non è da escludere che tale componente di 

velocità possa avere un peso maggiore di quanto non abbia a livelli di 

iniezione bassi, almeno per quei campioni particolarmente puri che presentano 

pochi centri di ricombinazione in banda proibita.  

Da quanto

tr

a

c

In

“

p

p

e

già detto p
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Questi sono solo alcuni delle possibilità che tale simulatore offre, infatti è 

altresì semplice vedere come variano i parametri variando le condizioni 

iniziali, ed allora sarebbe possibile individuare eventuali dipendenze tra i

parametri stessi, ma soprattutto sarebbe possibile capire come controllare i 

parametri da cui dipende il processo di ricombinazione, permettendo così la 

costruzione,  ad esempio, di celle solari più efficienti così come riportato 

nell’introduzione. 
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Appendice A 

Listati Matlab utilizzati per risolvere 

l’equazione della diffusione 1D/2D con tecnica 

analitica per bassi livelli di iniezione 

 
A.1 Listati Matlab per l’equazione 1D 
 
function 
[u,Nmedio]=xling1D(x,t,d,S0,S1,taub,alpha,Navg,Nd,Na,nmodi,R)
; 
% Questo programma calcola il profilo n(x,t) o p(x,t) secondo  
% il modello di Ling e Ajmera. 
% x    : coordinata x [cm]   
% t    : coordinata t [s] 
% d    : lunghezza del campione [cm] 
% S0   : SRV alla superficie dove comincia la generazione 
[cm/s] 
% S1   : SRV alla superficie opposta [cm/s] 
% taub : valore del lifetime di bulk [s] 
% alpha: coefficiente di assorbimento  
% Navg : densità media dei portatori in eccesso [cm^-3]  
% Nd   : donatori [cm^-3] 
% Na   : accettori [cm^-3] 
% nmodi: numero di modi della serie da tenere in 
considerazione 
% R   : coefficiente di riflessione agli spigoli 
N0=(Navg*d*(1-R*exp(-alpha*d)))/((1-R)*(1-exp(-alpha*d))); 
if Nd>Na    
   [mu0n,mu0p,Dn,Dp,D]=mobility2(Nd+N0,N0,Nd,Na); 
else        

nd; 
XX,TT]=meshgrid(x,t);XX=XX';TT=TT'; 
=zeros(size(XX)); 
condizione iniziale 
=exp(-alpha*(x'+d/2))+R*exp(-alpha*d)*exp(-alpha*(-x'+d/2)); 
=1-R^2*exp(-2*alpha*d); 

for k=1:nmodi, 

   [mu0n,mu0p,Dn,Dp,D]=mobility2(N0,N0+Na,Nd,Na); 
e
[
u
%
a
b
u(:,1)=((N0*(1-R)*alpha)/b)*a; 
%transitorio 
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     modo=xmodoling1D(XX,TT,d,S0,S1,taub,alpha,D,k-1,N0,R); 
     u(:,2:end)=u(:,2:end)+modo(:,2:end); 
end; 
Nmedio=1/d*trapz(XX(:,1),u); 
 
function modo=xmodoling1D(x,t,d1,S0,S1,taub,alfa,D,k,N0,R); 
% Questa funzione calcola il singolo modo delmodello di Ling 
e Ajmera. 

% t    : coordinata t [s] 
% d1   : lunghezza del campione [cm] 
% S0   : SRV alla superficie dove comincia la generazione 
[cm/s] 
% S1   : SRV alla superficie opposta [cm/s] 
% taub : valore del lifetime di bulk [s] 
% alfa : coefficiente di assorbimento (funzione di l del 
laser) 
% D    : Diffusione [cm^2/s]  
% k    : singolo modo della serie da tenere in considerazione 
% N0   : livello di iniezione dei portatori [cm^-2] 
% R   : coefficiente di riflessione agli spigoli 
g0=N0*(1-R)*alfa/(1-R^2*exp(-2*alfa*d1)); 
ak=fzero('funcling1D',[1000],optimset('disp','off'),S0,S1,d1,
D,k); 
zk=ak*d1/2; 
bk=-(D*ak*cos(zk)+S0*sin(zk))/(D*ak*sin(zk)-S0*cos(zk)); 
den=(bk^2*(ak*d1+sin(ak*d1))+(ak*d1-
sin(ak*d1)))*(ak^2+alfa^2); 
num1=(1+R*exp(-
alfa*d1))*bk*(cos(zk)*sinh(alfa*d1/2)+ak/alfa*sin(zk)*cosh(al
fa*d1/2)); 
num2=(1-R*exp(-alfa*d1))*(ak/alfa*cos(zk)*sinh(alfa*d1/2)-
sin(zk)*cosh(alfa*d1/2)); 
Bk=4*ak*g0*alfa*exp(-alfa*d1/2)*(num1+num2)/den; 
modo=Bk.*(bk.*cos(ak.*x)+sin(ak.*x)).*exp(-
(1/taub+ak.^2.*D).*(t-t(1))); 
 
function e=funcling1D(ak,S0,S1,d1,D,k); 
% In questa funzione si trova l'equazione trascendente di 
Ling e Ajmera 

% S0   : SRV alla superficie dove comincia la generazione 
[cm/s] 
% S1   : SRV alla superficie opposta [cm/s] 
% d1   : lunghezza del campione [cm] 
% D    : diffusione [cm^2/s] 
% k    : ordine del modo 
if S0==S1, 

% x    : coordinata x [cm]   

% ak   : zero della funzione 

end; 

    e=ak*d1-k*pi-2*atan(S0./(D*ak)); 
else 
    e=ak*d1-k*pi-atan(S0./(D*ak))-atan(S1./(D*ak)); 
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A.2 Listati Matlab per l’equazione 2D 
 
function 
[u1,Nmedio,Nmediox,Nmedioy]=xling2D(x,y,t,d,h,S0,S1,taub,alph
a,Navg,Nd,Na,nm
% Questo progr

odi,R); 
amma calcola il profilo n(x,y,t) o p(x,y,t) 

econdo  

 x    : coordinata x [cm] 
 y    : coordinata y [cm] 
 t    : coordinata t [s] 
 d    : spessore del campione lungo x [cm] 
 h    : spessore del campione lungo y [cm] 
 S0   : SRV alla superficie dove comincia la generazione 
cm/s] 
 S1   : SRV alla superficie opposta [cm/s] 
 taub : valore del lifetime di bulk [s] 
 alpha: coefficiente di assorbimento (funzione della 
unghezza d'onda del laser) 
 Navg : densità media dei portatori in eccesso [cm^-3]  
 Nd   : donatori [cm^-3] 
 Na   : accettori [cm^-3] 
 nmodi: numero di modi della serie da tenere in 
onsiderazione 
 R   : coefficiente di riflessione della superfici 
0=(Navg*d*h*(1-R*exp(-alpha*d)))/((1-R)*(1-exp(-alpha*d))); 
f Nd>Na    
   [mu0n,mu0p,Dn,Dp,D]=mobility2(Nd+N0,N0,Nd,Na); 
lse        
  [mu0n,mu0p,Dn,Dp,D]=mobility2(N0,N0+Na,Nd,Na); 
nd; 
XX,YY]=meshgrid(x,y); 
XX=meshgrid(XX,1)'; 
YY=meshgrid(YY,1)'; 
=zeros(length(x),length(y),length(t)); 
x=zeros(length(XXX),length(t)); 
y=zeros(length(YYY),length(t)); 
condizione iniziale 
=exp(-alpha*(XXX+d/2))+R*exp(-alpha*d)*exp(-alpha*(-
XX+d/2)); 
=1-R^2*exp(-2*alpha*d); 
x(:,1)=((N0*(1-R)*alpha)/b).*a; 
=zeros(length(x),length(y)); 
(:,ceil(length(y)/2))=1; 
=reshape(A',length(x)*length(y),1); 

).*exp(-((YYY-YYM).^2)./1e-13); 

for k=1:nmodi, 

s
% il modello di Ling e Ajmera. 
%
%
%
%
%
%
[
%
%
%
l
%
%
%
%
c
%
N
i
 
e
 
e
[
X
Y
u
n
n
%
a
X
b
n
A
A
A
YYM=YYY.*A; 
ny(:,1)=(length(y)/h
%transitorio 
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    modo=xmodoling2D(XXX,t,d,S0,S1,taub,alpha,D,k-
    nx(:,2:end)=nx(:,2:end)+modo(:,2:end); 

ny(:,2:end)=(ones(size(YYY))*(1./(2.*sqrt(pi.*D.*(t(2:end)-
t(1)))))).*(exp(-((YYY-YYM).^2)*(1./(4.*D.*(t(2:end)-
t(1)))))); 

u1=reshape(u,length(y),length(x),length(t)); 
Nmedio=squeeze(trapz(x,trapz(y,u1(:,:,:)))./(d*h)
Nmedioy=squeeze(trapz(y,u1(:,:,:))./h); 

1,N0,R); 

end; 

u=nx.*ny; 

); 

Nmediox=squeeze(trapz(x,u1(:,:,:),2)./d); 

S1,taub,alfa,D,k,N0,R); 
modo delmodello di Ling 

 

1   : spessore del campione lungo x [cm] 

posta [cm/s] 
e di bulk [s] 

 singolo modo della serie  
cm^-2] 

 superfici 
; 

d1,

+sin(ak*d1))+(ak*d1-

al

(-alfa*d1))*(ak/alfa*cos(zk)*sinh(alfa*d1/2)-

k*g0*alfa*exp(-alfa*d1/2)*(num1+num2)/den; 
*exp(-

t-t(1))); 

trova l'equazione trascendente di 

lla funzione 
del campione lungo x [cm] 

*ak))-atan(S1./(D*ak));end;     

 
function modo=xmodoling2D(XX,t,d1,S0,
% Questa funzione calcola il singolo 
e Ajmera.
% XX   : nodi della griglia x-y [cm] 
% t    : coordinata t [s] 
% d
% S0   : SRV alla superficie dove comincia la generazione 
[cm/s] 

p% S1   : SRV alla superficie o
% taub : valore del lifetim
% alfa: coefficiente di assorbimento  
% D    : diffusione [cm^2/s] 
% k    :
% N0   : livello di iniezione dei portatori [
% R    : coefficiente di riflessione della
g0=N0*(1-R)*alfa/(1-R^2*exp(-2*alfa*d1))
ak=fzero('funcling2D',[3000],optimset('disp','off'),S0,S1,
D,k); 
zk=ak*d1/2; 
bk=-(D*ak*cos(zk)+S0*sin(zk))/(D*ak*sin(zk)-S0*cos(zk)); 
den=(bk^2*(ak*d1
sin(ak*d1)))*(ak^2+alfa^2); 
num1=(1+R*exp(-

(cos(zk)*sinh(alfa*d1/2)+ak/alfa*sin(zk)*cosh(alfa*d1))*bk*
fa*d1/2)); 
num2=(1-R*exp
sin(zk)*cosh(alfa*d1/2)); 
Bk=4*a
modo=Bk.*(bk.*cos(ak.*XX)+sin(ak.*XX))
(1/taub+ak.^2.*D).*(
 
function e=funcling2D(ak,S0,S1,d1,D,k); 
% In questa funzione si 
Ling e Ajmera 
% ak : zero de
% d1 : spessore 
% k  : ordine del modo 
if S0==S1, 

ak*d1-k*pi-2*atan(S1./(D*ak));     e=
else  e=ak*d1-k*pi-atan(S0./(D
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Appendice B 
 
 
Listati Matlab dei modelli utilizzati per 

sione. 

 

e1; 

UM/Nd)^2)); 

))+a).^(-1)*(T/300)^2; 

m0/me)*(T/300))^0.28227)).^0.19778)
.72169)).^1.80618); 
(me/mh))./(Pn.^0.6478+2

(MMXN_UM^2/(MMXN_UM-MMNN_UM))*(T/300)^(3*ALPN_UM-1.5); 
c_n=((MMXN_UM*MMNN_UM)/(MMXN_UM-MMNN_UM))*(300/T)^0.5; 

((NRFN_UM./Nsc_n).^ALPN_

mu1n=mu_latt_n.^-1+muD_A_p.^-1; 

risolvere l’equazione della diffu

B.1 Listati Matlab 

function [mu0n,mu0p,Dn,Dp,Damb]=mobility2(n,p,Nd,Na) 
%Calcolo della mobilità secondo il modello di Philips
k=1.38e-23; 
q=1.602e-19; 
T=300; 
MMNN_UM=5.22
MMXN_UM=1.417e3; 
NRFN_UM=9.68e16; 
ALPN_UM=6.8e-1; 
TETN_UM=2.285; 
NRFD_UM=4e20; 
CRFD_UM=2.1e-1; 
MMNP_UM=4.49e1; 
MMXP_UM=4.705e2; 
NRFP_UM=2.23e17; 
ALPP_UM=7.19e-1; 
TETP_UM=2.247; 
NRFA_UM=7.2e20; 
CRFA_UM=5e-1; 
m0=9.11e-31;%Massa elettrone espressa in Kg 
me=m0; mh=1.258*m0; 
Ndast=Nd*(1+1/(CRFD_UM+(NRFD_
Naast=Na*(1+1/(CRFA_UM+(NRFA_UM/Na)^2)); 
mu_latt_n=MMXN_UM*((T/300)^(-TETN_UM));%mobilità elettroni 
Nsc_n=Ndast+Naast+p; 
a=2.459./(3.97e13.*Nsc_n.^(-2/3)); 
Pn=(((3.828./(1.36e20./(n+p))).*(m0/me
GPn=1-
(0.89233./(0.41372+Pn.*(((
+(0.005978./(Pn.*(((me/m0)*(300/T))^0
FPn=(0.7643.*Pn.^0.6478+2.2999+6.5502*
.3670-0.8552*(me/mh)); 
Nsc_eff_n=Ndast+(Naast.*GPn)+p./FPn; 
muN_n=
mu
muD_A_p=(muN_n.*(Nsc_n./Nsc_eff_n)).*
UM)+muc_n.*((n+p)./Nsc_eff_n); 
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mu_latt_p=MMXP_UM*((T/300)^(-TETP_UM));%Mobilità lacune 
t+Naast+n; 

)^0.72169)).^1.80618); 
.5502*(mh/me))./(Pn.^0.6478+2

./FPp; 
3*ALPP_UM-1.5); 
300/T)^0.5; 

al livello 

seco 

^2); 
*p-nie.^2); 

Nsc_p=Ndas
a1=2.459./(3.97e13.*Nsc_p.^(-2/3)); 
Pp=(((3.828./(1.36e20./(n+p))).*(m0/mh))+a1).^(-1)*(T/300)^2; 
GPp=1-
(0.89233./(0.41372+Pp.*((m0/mh)*(T/300))^0.28227).^0.19778)+(
0.005978./(Pp.*(((mh/m0)*(300/T)

999+6FPp=(0.7643.*Pp.^0.6478+2.2
.3670-0.8552*(mh/me)); 

+nNsc_eff_p=Naast+Ndast.*GPp
muN_p=(MMXP_UM^2/(MMXP_UM-MMNP_UM))*(T/300)^(
muc_p=((MMXP_UM*MMNP_UM)/(MMXP_UM-MMNP_UM))*(
muD_A_n=(muN_p.*(Nsc_p./Nsc_eff_p)).*((NRFP_UM./Nsc_p).^ALPP_
UM)+muc_p.*((n+p)./Nsc_eff_p); 
mu1p=mu_latt_p.^-1+muD_A_n.^-1; 
mu0n=mu1n.^-1; 
mu0p=mu1p.^-1; 
Dn=(k*T./q).*mu0n; 
Dp=(k*T./q).*mu0p; 

mu0p+p./mu0n); Damb=(k*T./q).*(n+p)./(n./
 
 
function Usrh=srh_time(n,p,taun0,taup0,etrap,Nd,Na); 
% Calcolo della U di SRH ed Auger 
% p : lacune iniettate [cm-3] 

oni iniettati [cm-3] % n : elettr
% taun0 : lifetime degli elettroni [s] 

fetime delle lacune [s] % taup0 : li
% etrap : distanza del centro di ricombinazione d
di  
%          Fermi  intrin
nsrhn=1e17; 
nsrhp=1e17; 
augn=1e-31; 
augp=1e-31; 
Cdirect=1e-15; 
nie=1.45e10; 
q=1.602e-19; 
k=1.38e-23; 
T=300; 
ntot=Nd+Na;  
taun=taun0./(1+ntot/nsrhn); 

; taup=taup0./(1+ntot/nsrhp)
c=(p.*n-nie^2); 

ie.*exp(q*etrap/(k*T))); a=taup.*(n+n
b=taun.*(p+nie.*exp(-q*etrap/(k*T))); 

p.*n.^2-n.*nie.^2)+augp*(n.*p.^2-p.*nie.Uauger=augn*(
Udir=Cdirect*(n.
Usrh=c./(a+b)+Uauger+Udir; 
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Appendice C 

Listati Matlab per la soluzione dell’equazione 

o delle 

iniezione 

one 1D 

,Navg,N

ttore dei tempi [s] 

a 1 

ombinazione superificale sulla 2 

 

une 

hezza d'onda 

rtatori in eccesso [cm-3]  

1/purament implicito,0.5/Crank-

/alti livelli di 

*(1-exp(-alpha*d))); 

 Nd>Na 

della diffusione 1D/2D col metod

differenze finite per livelli di 

arbitrari 

 
C.1 Listati Matlab per l’equazi
 
function 

,taup0,alpha[u1,Nmedio]=implicito1_D(x,t,d,S0,S1,taun0
d,Na,R,metodo,livello); 
% x      : nodi della griglia 
% t      : ve
% d      : spessore del campione [cm] 

one superificale sull% S0     : velocità di ricombinazi
faccia [cm/s] 

ocità di ric% S1     : vel
faccia [cm/s] 
% taun0  : tempo di vita medio di ricombinazione degli
elettroni [s] 
% taup0  : tempo di vita medio di ricombinazione delle lac
[s] 

 lung% alpha  : coefficiente di assorbimento alla
della pompa [cm-1] 
 Navg   : densità media dei po%
% Nd     : donatori [cm-3] 
% Na     : drogaggio accettori [cm-3] 
% R     : coefficiente di riflessione agli spigoli 
% metodo :0/esplicito,
Nicolson,altro/semi-implicito 

elli d'iniezione,1% livello:0/bassi liv
iniezione 
N0=(Navg*d*(1-R*exp(-alpha*d)))/((1-R)
etrap=0; 
nie=1.45e10; 
%Campione TYPE N 
if
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   [mu0n,mu0p,Dn,Dp,D]=mobility2(Nd+N0,N0,Nd,Na); 

%Campione TYPE P 

dx=x(2)-x(1); 
]; 

2)); 

(1-R)*alpha)/b)*a; 
ini'; %condizione iniziale  

arametro che definisce il metodo implicito 
1, 
,j)+n1,u1(:,j)+p1,taun0,taup0,etrap,Nd,Na); 

,D]=mobility2(u1(:,j)+n2,p2+u1(:,j),Nd,Na); 
ent(D,x); 
; 
^2); 
rad_D/2*dx; 
le due matrici tridiagonali a blocchi    
Cx(1:Nx).*lambda,0);  

(1:Nx-1)-Bx(1:Nx-1)).*lambda,-1); 
2:Nx)+Bx(2:Nx)).*lambda,1); 

-2*Cx(1:Nx).*(1-lambda),0); 
a),-1); 

+Bx(2:Nx)).*(1-lambda),1); 

:)=[(-D(2)/(2*dx)),-S0,(D(2)/(2*dx)),zeros(1,Nx-3)]; 

trazioni per j+1 

   n1=Nd;p1=0;n2=Nd;p2=nie^2/Nd; 
else 

   [mu0n,mu0p,Dn,Dp,D]=mobility2(N0,N0+Na,Nd,Na); 
   n1=0;p1=Na;n2=nie^2/Na;p2=Na; 
end; 

x=[x(1)-dx,x,x(end)+dx
Nx=length(x); 
Nt=length(t); 
u1=zeros(Nx,Nt); 
a=exp(-alpha*(x+d/2))+R*exp(-alpha*d)*exp(-alpha*(-x+d/

2*alpha*d); b=1-R^2*exp(-
cond_ini=((N0*

cond_u1(:,1)=
lambda=metodo; %P
for j=1:length(t)-
   U=srh_time(u1(:
   
[mu0n,mu0p,Dn,Dp
   Grad_D=Gradi
   dt=t(j+1)-t(j)
   Cx=dt.*D./(dx.
   Bx=livello*dt*G
   % creazione del
   Jdiag=diag(1+2*
   Jlx=diag(-(Cx
   Jhx=diag(-(Cx(
   Rdiag=diag(1
   Rlx=diag((Cx(1:Nx-1)-Bx(1:Nx-1)).*(1-lambd
   Rhx=diag((Cx(2:Nx)
   %matrice che moltiplica U(i,j+1) 
   J=Jlx+Jdiag+Jhx; 
   % matrice che moltiplica U(i,j)  
   R=Rlx+Rdiag+Rhx; 
   Res=R*u1(:,j)-U*dt; 
   %Condizioni al contorno tipo Neumann 
   J(1,
   J(Nx,:)=[zeros(1,Nx-3),(-D(Nx-1)/(2*dx)),S1,(D(Nx-
1)/(2*dx))]; 
   Res(1)=0; 
   Res(Nx)=0; 
   %Calcolo della matrice delle concen
   u1(:,j+1)=J\Res; 
end; 
u1=u1(2:end-1,:); 
Nmedio=1/d*trapz(x(2:end-1),u1); 
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C.2 Listati Matlab per l’equazione 2D 
 
function 
[B,Nmedio,Nmediox,Nmedioy]=implicito2D(x,y,t,d,h,S0,S1,taun0,

lungo x[cm] 
lungo y[cm] 

ità di ricombinazione superificale sulla 1 

di ricombinazione superificale sulla 2 

azione degli 
ettroni [s] 

 lacune 

ento alla lunghezza d'onda 

n eccesso [cm-3]  

nt implicito,0.5/Crank-

assi livelli d'iniezione,1/alti livelli di 

(1-R*exp(-alpha*d)))/((1-R)*(1-exp(-alpha*d))); 

YPE N 
,Dn,Dp,D]=mobility2(Nd+N0,N0,Nd,Na); 
;n2=Nd;p2=nie^2/Nd; 

ty2(N0,N0+Na,Nd,Na); 

=length(t); 
=Nx*Ny; 

,y); 
YYM=zeros(size(YY)); 

taup0,alpha,Navg,Nd,Na,R,metodo,livello); 
% x      : nodi della griglia lungo x  
% y      : nodo della griglia lungo y  
% t      : vettore dei tempi [s] 
% d      : spessore del campione 

sore del campione % h      : spes
% S0     : veloc
faccia [cm/s] 
% S1     : velocità 
faccia [cm/s] 
 taun0  : tempo di vita medio di ricombin%
el
% taup0  : tempo di vita medio di ricombinazione delle
[s] 

orbim% alpha  : coefficiente di ass
del laser [cm-1] 
% Navg   : densità media dei portatori i

-3] % Nd     : drogaggio di donatori [cm
% Na     : drogaggio di accettori [cm-3] 
% R      :coefficiente di riflessione delle superfici 
% metodo :0/esplicito,1/purame

ro/semi-implicito Nicolson,alt
% livello:0/b
iniezione 
N0=(Navg*d*h*
etrap=0; 
nie=1.45e10; 
if Nd>Na 

 T   %Campione
n,mu0p   [mu0

    n1=Nd;p1=0
else 
   %Campione TYPE P 

,Dp,D]=mobili   [mu0n,mu0p,Dn
   n1=0;p1=Na;n2=nie^2/Na;p2=Na; 
end; 
dx=x(2)-x(1); 
dy=y(2)-y(1); 
Nx=length(x)+2; 
y=length(y); N
M
P
u1=zeros(P,M); 
u1a=zeros(Nx,Ny); 
[XX,YY]=meshgrid(x
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YYM(fix(Ny/2)+1,:)=YY(fix(Ny/2)+1,:); 
a=exp(-alpha*(XX+d/2))+R*exp(-alpha*d)*exp(-alpha*(-XX+d/2));

cond_ini=((N0*(1-R)*alpha)/b).*a; 
cond_ini=cond_ini.*(length(y)/h).*exp(-((YY-YYM).^2)
u1a(2:Nx-1,1:Ny)=cond_ini'; 

u1a(Nx,:)=u1a(Nx-1,:); 
u1(:,1)=reshape(u1a,P,1);%condizione iniziale  
clear u1a; 

lambda=metodo
for j=1:M-1, 

 
b=1-R^2*exp(-2*alpha*d); 

./1e-13); 

u1a(1,:)=u1a(2,:); 

clear YYM; 
;%Parametro che definisce il metodo implicito 

   U=srh_time(u1(:,j)+n1,u1(:,j)+p1,taun0,taup0,etrap,Nd,Na); 

mu0n,mu0p,Dn,Dp,D]=mobility2(u1(:,j)+n2,p2+u1(:,j),Nd,Na); 

y]=gradient(GD); 

delle due matrici tridiagonali a blocchi    

x(1:P-1)-Bx(1:P-1)).*lambda,-1); 

y(2:P-2)+By(2:P-2)).*lambda,3); 

P-2)).*(1-lambda),3); 

,j)  

(:,j)-U*dt; 

:(Nx*(Ny-1))+1, 
zeros(1,i-1),(-D(i)./(2.*dx)),-

,zeros(1,P-(i+2))]; 

(2.*dx)),S1,(D(i)./(2.*dx)),zeros(1,P-i)]; 

   
[
   GD=D; 
  GD=reshape(GD,Nx,Ny);  
   [GDx,GD
   Gradx_D=reshape(GDx,P,1); 
   Grady_D=reshape(GDy,P,1); 
   dt=t(j+1)-t(j); 
   Cx=dt*D./dx.^2; 
   Cy=dt*D./dy.^2; 
   Bx=(dt*Gradx_D./2.*dx).*livello; 
   By=(dt*Grady_D./2.*dy).*livello; 
   % creazione 
   Jdiag=diag(1+2*Cx(1:P).*lambda+2*Cy(1:P).*lambda,0); 
   Jlx=diag(-(C
   Jhx=diag(-(Cx(2:P)+Bx(2:P)).*lambda,1); 
   Jhy=diag(-(C
   Jly=diag(-(Cy(1:P-3)-By(1:P-3)).*lambda,-3); 
   Rdiag=diag(1-2*Cx(1:P).*(1-lambda)-2*Cy(1:P).*(1-
lambda),0); 
   Rlx=diag((Cx(1:P-1)-Bx(1:P-1)).*(1-lambda),-1); 
   Rhx=diag((Cx(2:P)+Bx(2:P)).*(1-lambda),1); 
   Rhy=diag((Cy(2:P-2)+By(2:
   Rly=diag((Cy(1:P-3)-By(1:P-3)).*(1-lambda),-3); 
   %matrice che moltiplica U(i,j+1) 
   J=Jlx+Jly+Jdiag+Jhx+Jhy; 
   % matrice che moltiplica U(i
   R=Rlx+Rly+Rdiag+Rhx+Rhy; 
   Res=R*u1
   %Condizioni al contorno tipo Neumann 
   for i=1:Nx
      J(i,:)=[
S0,(D(i)./(2.*dx))
   end; 
   for i=Nx:Nx:Nx*Ny, 
      J(i,:)=[zeros(1,i-3),(-
D(i)./
   end; 
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   for i=1:Nx:(Nx*(Ny-1))+1, 
      Res(i)=0; 
   end; 

Nx*Ny, 

la matrice delle concentrazioni per j+1 
; 

; 

,trapz(x,B(:,:,:)))./(d*h)); 

   for i=Nx:Nx:
      Res(i)=0; 
   end; 
   %Calcolo del
   u1(:,j+1)=J\Res
end; 
for j=1:M, 
   A(:,:,j)=reshape(u1(:,j),Nx,Ny)
   B(:,:,j)=A(2:Nx-1,1:Ny,j); 
end; 
Nmedio=squeeze(trapz(y
Nmedioy=squeeze(trapz(y,B(:,:,:),2)./h); 

:))./d); Nmediox=squeeze(trapz(x,B(:,:,
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